Phase diagrams of one-dimensional lattice models with long-range antiferromagnetic interaction
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 38 (1983) no. 4, pp. 235-257 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1983_38_4_a11,
     author = {S. E. Burkov and Ya. G. Sinai},
     title = {Phase diagrams of one-dimensional lattice models with long-range antiferromagnetic interaction},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {235--257},
     year = {1983},
     volume = {38},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1983_38_4_a11/}
}
TY  - JOUR
AU  - S. E. Burkov
AU  - Ya. G. Sinai
TI  - Phase diagrams of one-dimensional lattice models with long-range antiferromagnetic interaction
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1983
SP  - 235
EP  - 257
VL  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_1983_38_4_a11/
LA  - en
ID  - RM_1983_38_4_a11
ER  - 
%0 Journal Article
%A S. E. Burkov
%A Ya. G. Sinai
%T Phase diagrams of one-dimensional lattice models with long-range antiferromagnetic interaction
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1983
%P 235-257
%V 38
%N 4
%U http://geodesic.mathdoc.fr/item/RM_1983_38_4_a11/
%G en
%F RM_1983_38_4_a11
S. E. Burkov; Ya. G. Sinai. Phase diagrams of one-dimensional lattice models with long-range antiferromagnetic interaction. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 38 (1983) no. 4, pp. 235-257. http://geodesic.mathdoc.fr/item/RM_1983_38_4_a11/

[1] V. L. Pokrovsky, G. V. Uimin, “On the properties of monolayers of absorbed atoms”, J. Phys. C: Solid State Phys., 11 (1978), 3535–3549 | DOI

[2] J. Hubbard, “Generalized Wigner lattices in one dimension and some applications to tetracyanoquinodimethane (TCNQ)”, Salts; Phys. Rev. B, 17 (1978), 494–505 | DOI

[3] P. Bak, Incommensurate, Commensurate and Chaotic Phases, Preprint Nordita, 1982 | MR

[4] Ya. G. Sinai, Teoriya fazovykh perekhodov, Nauka, M., 1980 | MR

[5] R. L. Dobrushin, “Sluchainye gibbsovskie polya dlya reshetchatykh sistem s parnym vzaimodeistviem”, Funkts. analiz, 2 (1974), 31–43

[6] R. L. Dobrushin, “Usloviya otsutstviya fazovykh perekhodov v odnomernykh klassicheskikh modelyakh”, Matem. sb., 93 (1974), 29–49 | Zbl

[7] A. Ya. Khinchin, Tsepnye drobi, Nauka, M., 1978 | MR

[8] D. Ryuell, Statisticheskaya mekhanika, Mir, M., 1971

[9] P. Bak, R. Bruinsma, “One-dimensional Ising model and complete Devil's staircase”, Phys. Rev. Lett., 49 (1982), 249–252 | DOI | MR

[10] B. Mandelbrot, The fractal geometry of nature, W. H. Freeman and Co., San Fransisco, 1982 | MR | Zbl

[11] J. Bricmont, J. Lebowitz, Ch. Pfister, “On the equivalence of boundary conditions”, J. of Stat. Phys., 21 (1979), 573–582 | DOI | MR

[12] F. Dyson, “An Ising ferromagnet with discontinuous long range order”, Comm. Math. Phys., 21 (1971), 269–283 | DOI | MR

[13] L. D. Landau, E. M. Lifshits, Statisticheskaya fizika (1), Nauka, M., 1976 | MR