Eight faces of the Poincaré homology 3-sphere
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 37 (1982) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1982_37_5_a28,
     author = {R. C. Kirby and M. G. Scharlemann},
     title = {Eight faces of the {Poincar\'e} homology 3-sphere},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1982},
     volume = {37},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1982_37_5_a28/}
}
TY  - JOUR
AU  - R. C. Kirby
AU  - M. G. Scharlemann
TI  - Eight faces of the Poincaré homology 3-sphere
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1982
VL  - 37
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1982_37_5_a28/
LA  - ru
ID  - RM_1982_37_5_a28
ER  - 
%0 Journal Article
%A R. C. Kirby
%A M. G. Scharlemann
%T Eight faces of the Poincaré homology 3-sphere
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1982
%V 37
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1982_37_5_a28/
%G ru
%F RM_1982_37_5_a28
R. C. Kirby; M. G. Scharlemann. Eight faces of the Poincaré homology 3-sphere. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 37 (1982) no. 5. http://geodesic.mathdoc.fr/item/RM_1982_37_5_a28/

[1] E. Brieskorn, “Die Auflösung der rationalen Singularitäten holomorpher Abbildungen”, Math. Annalen, 178:4 (1968), 225–270 | DOI | MR

[2] R. Crowell, R. Fox, Introduction to knot theory, Ginn, Boston, 1963 ; R. Krouell, R. Foks, Vvedenie v teoriyu uzlov, Mir, M., 1967 | MR | Zbl | MR

[3] H. Coxeter, Regular complex polytopes, Cambridge Univ. Press, London, 1974 | MR | Zbl

[4] P. Du Val, Homographies, quaternions and rotations, Oxford Univ. Press, Oxford, 1964 | MR | Zbl

[5] J. Hempel, 3-manifolds, Annals of mathematical studies, 86, Princeton Univ. Press, Princeton, 1976 | MR | Zbl

[6] F. Hirzebruch, “The topology of normal singularities of an algebraic surface (d'apres Mumford)”, Seminaire Bourbaki, 15${}^e$ annes, no. 250, 1962/63

[7] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966 ; F. Khirtsebrukh, Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973 | MR

[8] M. Kervaire, “Smooth homology spheres and their fundamental groups”, Trans. Amer. Math. Soc., 144 (1969), 67–72 | DOI | MR | Zbl

[9] R. Kirby, “A calculus for framed links in $S^3$”, Invent. Math., 45:1 (1978), 35–56 | DOI | MR | Zbl

[10] F. Klein, Lectures on the icosahedron and the solution of equations of the fifth degree, Dover, New York, 1956 | MR

[11] H. B. Laufer, Normal two-dimensional singularities, Annals of mathematical studies, 71, Princeton Univ. Press, Princeton, 1971 | MR | Zbl

[12] J. Milnor, “On the 3-dimensional Brieskorn manifolds $M (p, q, r)$”, Knots, groups and 3-manifolds, Annals of mathematical studies, 84, ed. L. P. Neuwirth, Princeton Univ. Press, Princeton, 1975, 175–226 | MR

[13] P. Orlik, Seifert manifolds, Lect. Notes in Math., 291, Springer-Verlag, Berlin–Heidelberg–New York, 1972 | MR | Zbl

[14] D. Rolfsen, Knots and links, Publish or Perish, Boston, 1976 | MR | Zbl

[15] H. Samelson, Notes on Lie algebras, Van Nostrand, New York, 1969 | MR | Zbl

[16] M. Scharlemann, “Constructing strange manifolds with the dodecahedral space”, Duke Math. J., 43:1 (1976), 33–40 | DOI | MR | Zbl

[17] M. Scharlemann, “Thoroughly knotted homology spheres”, Houston J. Math., 3:2 (1977), 271–283 | MR | Zbl

[18] H. Seifert, W. Threllfall, Lehrbuch der Topologie, Teubner, Leipzig, 1934; G. Zeifert, V. Trelfall, Topologiya, GONTI, M.–L., 1938

[19] L. Siebenmann, “Topological manifolds”, Actes du Congres international de mathematiciens (1970), 2, Gauthier-Villars, Paris, 1971, 133–163 | MR

[20] E. Stein, A smooth action on a sphere with one fixed point, Thesis, Princeton University, 1975 | MR

[21] E. C. Zeeman, “Twisting spun knots”, Trans. Amer. Math. Soc., 115:3 (1965), 471–495 | DOI | MR | Zbl