@article{RM_1980_35_6_a19,
author = {S. L. Kleiman},
title = {The enumerative theory of singularities},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1980},
volume = {35},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1980_35_6_a19/}
}
S. L. Kleiman. The enumerative theory of singularities. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 35 (1980) no. 6. http://geodesic.mathdoc.fr/item/RM_1980_35_6_a19/
[1] A. Andreotti, T. Frankel, “The second Lefschets theorem on hyperplane sections”, Papers in honor of K. Kodaira, Global analysis, Princeton Math. Series, 29, eds. D. C. Spencer, S. Iyanaga, Univ. of Tokyo Press, Princeton Univ. Press, 1969 | MR
[2] A. B. Altman, S. L. Kleiman, Introduction to Grothendieck duality theory, Springer lecture notes in math., 146, 1970 | MR
[3] A. B. Altman, S. L. Kleiman, “Joins of schemes, linear projections”, Compositio Math., 31 (1975), 309–343 | MR
[4] M. Artin, M. Nagata, “Residual intersections in Cohen-Macaulay rings”, J. Math. Kyoto Univ., 12 (1972), 307–323 | MR | Zbl
[5] M. F. Atiyah, “Complex analytic connections in fiber bundles”, Trans. Amer. Math. Soc., 85 (1957), 181–207 | DOI | MR | Zbl
[6] A. Borel, A. Haeflieger, “La classe d'homologie fundamental d'un espace analytique”, Bull. Soc. Math. France, 89 (1961), 461–513 | MR | Zbl
[7] H. F. Baker, Principles of Geometry. Volume VI. Introduction to the theory of algebraic surfaces and higher loci, Cambridge University Press, 1933
[8] L. Berzolari, “Allgemeine Theorie der höheren ebenen algebraischen Kurven”, Enzyklopädie der Math. Wissenschaften, III, 2, Teubner, Leipzig, 1906
[9] L. Berzolari, “Théorie générale des courbes planes algébriques”, Encyclopédie des sciences mathématiques, III, 19, Teubner, Leipzig, 1915
[10] C. Chevalley, “Les classes d'équivalences rationelles. I, II”, Anneaux de Chow et applications, Séminaire C. Chevalley, 2, Secr. Math. Paris, 1958
[11] J. Dieudonné, “Cours de géométrie algebrique 1/Apercu historique sur le developpement de la géométrie algébrique”, Collection sup., Presses Univ. de France, 1974
[12] A. Grothendieck, Eléments de géométrie algébrique, IV, Publ. I.H.E.S., 32, Presses Univ. de France, Vendôme, 1967 (with J. Dieudonné)
[13] W. Fulton, “Rational equivalence for singular varieties”, Appendix to: P. Baum, W. Fulton, R. MacPherson, Riemann-Roch for Singular Varieties, Publ. Math. I.H.E.S., 45, Presses Univ. de France, Vendôme, 1975 | MR
[14] W. Fulton, A note on residual intersections and the double point formula, preprint | MR
[15] W. Fulton, Canonical classes on algebraic varieties: an introduction, Lecture at Aarhus University, 1976
[16] W. Fulton, D. Laksov, “Residual intersections and the double point formula”, Real and complex singularities, Proc. Nordic Summer School, Oslo, 1976, 171–178 | MR | Zbl
[17] M. Golubitsky, V. Guillemin, Stable mappings and their singularities, Springer graduate text in math., 14, 1973 | MR | Zbl
[18] G. Galbubra, “Despre varietatile canonice si ciclurile caracterstice ale unei varietati algebrice”, Acad. Repub. Pop. Romine Bul. Sti. Sect. Math. Fiz., 6 (1964), 61–64
[19] G. Galbubra, “Le faisceau jacobien d'un systeme de faisceaux inversibles”, Rev. Roumaine Math. Pures Appl., 14 (1969), 785–792 | MR
[20] R. V. Gamkrelidze, “Vychislenie klassov Chzhenya algebraicheskikh mnogoobrazii”, DAN, 90 (1953), 719–722 | MR | Zbl
[21] A. Grothendieck, “Théorie des classes de Chern”, Bull. Soc. Math. France., 86 (1958), 137–154 | MR | Zbl
[22] A. Grothendieck, “Sur propriétes foundamentales en théorie des intersections”, Séminaire C. Chevalley, 2, Secr. Math. Paris, 1958 | MR
[23] R. J. Herbert, Multiple points of immersed manifolds, Doctoral thesis, Univ. of Minnesota, 1976
[24] A. Haefliger, “Points multiples d'une application et produit cyclique réduit”, Bull. Soc. Math. France, 87 (1959), 351–359 | MR | Zbl
[25] W. V. D. Hodge, “The characteristic classes on algebraic varieties”, Proceedings London Math. Soc., 3 (1951), 138–151 | DOI | MR
[26] A. Haefliger, A. Kosinski, “Un théoréme de Thom sur les singularités des applications différentiables”, Séminarie H. Cartan, no. 8, 1956–1957 | MR
[27] A. Holme, “Formal embedding and projection theorems”, Amer. J. Math., 93 (1971), 527–571 | DOI | MR | Zbl
[28] A. Holme, “Projection of non-singular projective varieties”, J. Math. Kyoto University, 13 (1973), 301–322 | MR | Zbl
[29] A. Holme, Embedding-obstructions for algebraic varieties, I, preprint, University of Bergen, Norway, 1974
[30] A. Holme, “Embedding-obstructions for singular algebraic varieties in $\mathbb{P}^N$”, Acta Math., 135 (1975), 155–185 | DOI | MR | Zbl
[31] R. Hartshorne, Residues and Duality, Springer lecture notes in math., 20, 1966 | MR | Zbl
[32] F. Hirzebruch, Topological methods in algebraic geometry, Third enlarged edition, Grundlehren der math. Wissenschaften, 131, Springer-Verlag, 1966 | MR
[33] A. Iarrobino, “Reducibility of the families of $0$-dimensional schemes on a variety”, Inventiones math., 15 (1972), 72–77 | DOI | MR | Zbl
[34] B. Iversen, “Numerical invariants and multiple planes”, Amer. J. Math., 92 (1970), 968–996 | DOI | MR | Zbl
[35] B. Iversen, “Critical Points of an algebraic function”, Inventiones math., 12 (1971), 210–224 | DOI | MR | Zbl
[36] B. Iversen, “On the exceptional tangents to a smooth. Plane curve”, Math. Z., 125 (1972), 359–360 | DOI | MR | Zbl
[37] B. Iversen, Sheaf theory
[38] A. S. Ingleton, D. B. Scott, “The tangent direction bundle of an algebraic variety”, Ann. di Math., 56:4 (1961), 359–374 | DOI | MR
[39] J. P. Jouanolou, “Riemann-Roch sans dinominateurs”, Inventiones math., 11 (1970), 15–26 | DOI | MR | Zbl
[40] K. W. Johnson, Immersion and embedding of projective varieties, Doctoral thesis, Brow University Providence, RI, 1976
[41] G. Kempf, Schubert methods with an application to algebraic curves, Publication of the Mathematisch Centrum, Amsterdam, 1971
[42] G. Kempf, D. Lakcov, “The determinantal formula of Schubert calculus”, Acta Math., 132 (1974), 153–162 | DOI | MR | Zbl
[43] S. L. Kleiman, “Motives in Algebraic geometry”, Algebraic geometry (Oslo 1970), ed. F. Oort, Wolters-Noordhoff Publ., Groningen, 1972 | MR
[44] S. L. Kleiman, “The transversality of a general translate”, Compositio Math., 38 (1974), 287–297 | MR
[45] S. L. Kleiman, “Problem 15. Rigorous foundation of Schubert's enumerative calculus”, Proc. Symposia in Pure Math., 28, A. M. S., Providence, 1976 | MR
[46] S. L. Kleiman, Chasles's enumerative theory of conies. A historical introduction, Aarhus university preprint series 1975/76 No 32, Aarhus Denmark
[47] S. L. Kleiman, Todd's double-point formula, Lecture at Aarhus University, 1976
[48] S. L. Kleiman, D. Laksov, “On the existence of special divisors”, Amer. J. Math., 93 (1972), 431–436 | DOI | MR
[49] S. L. Kleiman, D. Laksov, “Another proof of the existence of special divisors”, Acta Math., 132 (1974), 163–176 | DOI | MR | Zbl
[50] A. Kato, “Singularities of projective embedding (points of order $n$ on an elliptic curve)”, Nagoya Math. J., 45 (1971), 97–107 | MR
[51] R. F. Lax, “Weierstrass points of the universal curve”, Math. Ann., 216 (1975), 35–42 | DOI | MR | Zbl
[52] A. Landman, Examples of varieties with “small” dual varieties, Lecture at Aarhus university, 1976
[53] A. Landman, Picard-Lefschetz theory and dual varieties, Lecture at Aarhus university, 1976
[54] S. Lefschetz, Topology, 2-nd Ed., Chelsea Publ. Co., New York, 1956
[55] D. Laksov, Some enumerative properties of secants to nonsingular projective schemes, preprint, M.I.T., 1975
[56] D. Laksov, Secant bundles and Todd's formula for the double points of maps into $\mathbb{P}^n$, preprint, April 1976, M.I.T. | MR
[57] D. Laksov, Residual intersections and Todd's formula for the double locus of a morphism, preprint, June 1976, M.I.T.
[58] E. Lluis, “De las singularidades que aparecenal proyectar variedades algebraicas”, Bol. Soc. Mat. Mexicana, 1956, no. 1, 1–9 | MR | Zbl
[59] G. Laumon, “Degré de la variété duale d'une hypersurface a singularités isolées”, Bull. Soc. Math. France, 104 (1976), 51–63 | MR | Zbl
[60] R. Lashof, S. Smale, “Self-intersections of immersed manifolds”, J. Math. Mech., 1959, no. 8, 143–157 | MR | Zbl
[61] A. Lascoux, “Calcul de certains polynomes de Thom”, Comptes Rendus Acad. Sci. Paris, 278 (1974), 889–891 | MR | Zbl
[62] A. Lascoux, “Puissance extérieures, déterminants et cycles de Schubert”, Bulletin de la Société Mathematique de France, 102 (1974), 161–179 | MR | Zbl
[63] A. Lascoux, Sistemi lineari de divisori sulle curve e sulle superficie, preprint
[64] C. McCrory, “Geometric homology operations”, Suppl. Studies, 5 (1978), 119–141 | MR
[65] J. N. Mather, “Stable map-germs and algebraic geometry”, Manifolds (Amsterdam 1970), Lecture Notes in math., 197, 1971, 176–193 | MR | Zbl
[66] J. N. Mather, “Generic projections”, Annals Math., 98 (1973), 226–245 | DOI | MR | Zbl
[67] C. McCrory, R. Hardt, “Steenrod operations in subanalytic homology”, Comp. math., 39:3 (1979), 339–371 | MR
[68] K. K. Mukherjia, “Chern classes and projective geometry”, J. Differential Geometry, 1972, no. 7, 473–478 | MR
[69] A. T. Lascu, D. Mumford, D. B. Scott, “The self-intersection formula and the “formul-clef””, Math. Proc. Camb. Phil. Soc., 78 (1975), 117–123 | DOI | MR | Zbl
[70] M. Menn, “Singular Manifolds”, J. diff. geometry, 1971, no. 5, 523–542 | MR | Zbl
[71] J. Milnor, Singular points of complex hypersurfaces, Annals of Math. Study, 61, Princeton Univ. Press, Princeton, 1968 | MR | Zbl
[72] A. P. Mattuck, “On symmetric products of curves”, Proc. of the American Mathematical Society, 13 (1962), 82–87 | DOI | MR | Zbl
[73] A. P. Mattuck, “Secant bundles on symmetric products”, Amer. J. of Math., 87 (1965), 779–797 | DOI | MR | Zbl
[74] K. R. Mount, O. E. Villamayor, “An algebraic construction of the generic singularities of Boardman-Thom”, Inst. Hautes Etudes Sci. Publ. Math., 43 (1974), 205–244 | DOI | MR
[75] K. R. Mount, O. E. Villamayor, “Weierstrass points as singularities of maps in arbitrary characteristic”, J. Alg., 31 (1974), 343–353 | DOI | MR | Zbl
[76] K. R. Mount, O. E. Villamayor, Special frames for Thom-Bourdman singularities, Preprint
[77] B. G. Moishezon, “Ob algebraicheskikh klassakh gomologii na algebraicheskikh mnogoobraziyakh”, Izv. AN, ser. matem., 31:2 (1967), 225–268 | MR
[78] S. Nakano, “Tangent vector bundles and Todd canonical systems of an algebraic variety”, Mem. Coll. Sci. Kyoto (A), 29 (1955), 145–149 | MR | Zbl
[79] R. H. Ogawa, “On the points of Weierstrass in dimensions greater than one”, Trans. of the Amer. Math. Society, 184 (1973), 401–417 | DOI | MR
[80] W. F. Pohl, “Differential geometry of higher order”, Topology, 1962, no. 1, 169–211 | DOI | MR | Zbl
[81] W. F. Pohl, “Extrinsic complex projective geometry”, Proceedings of the conference on complex Analysis (Minneapolis 1964), Springer-Verlag, 1965, 18–29 | MR
[82] R. Piene, Plücker formulas, Doctoral thesis, M. I. T., Cambridge, MA, 1976
[83] R. Piene, Numerical characters of a curve in projective $n$-space, preprint | MR
[84] C. A. M. Peters, J. Simonis, “A secant formula”, Quart. J. Math. Oxford, 27:2 (1976), 181–189 | DOI | MR | Zbl
[85] I. R. Porteous, Liverpool singularities symposium, I, Lecture notes in math., 192, Springer-Verlag, 1971, 280–307 | MR
[86] I. R. Porteous, “Todd's canonical classes”, Liverpool singularities symposium, I, Lecture notes in math., 192, Springer-Verlag, 1971, 308–312 | MR
[87] I. R. Porteous, “Blowing-up Chern classes”, Proc. Cambridge Phil. Soc., 56 (1960), 118–124 | DOI | MR | Zbl
[88] J. Roberts, “Generic projections of algebraic varieties”, Amer. J. Math., 93 (1971), 191–215 | DOI | MR
[89] J. Roberts, “Chow's moving lemma”, Algebraic geometry (Oslo 1970), ed. F. Oort, Wolters-Noordhoff Publ., Groningen, 1972 | MR
[90] J. Roberts, “The variation of critical cycles in algebraic families”, Trans. Amer. Math. Soc., 168 (1972), 153–164 | DOI | MR | Zbl
[91] J. Roberts, “Singularity subschemes and generic projections (research announcement)”, Bull. Amer. Math. Soc., 78 (1972), 706–708 | DOI | MR | Zbl
[92] J. Roberts, “Generic coverings of $\mathbb{P}^r$ when char $(k)>0$”, Notices Amer. Math. Soc., 20 (1973), abstract p. 704-A5 | Zbl
[93] J. Roberts, “Singularity subschemes and generic projections”, Trans. Amer. Math. Soc., 212 (1975), 229–268 | DOI | MR | Zbl
[94] J. Roberts, A stratification of the dual variety (Summary of results with indications of proof), Preprint, 1976
[95] J. Roberts, Embedding obstructions and multiple point cycles, Lecture at Aarhus Univ., 1976
[96] F. Ronga, “Les classes duales aux singularités de Boardman d'ordre deux”, C.R. Acad. Sci. Paris, 270 (1970), 582–584 | MR | Zbl
[97] F. Ronga, “Le calcul des classes duales aux singularités de Boardman d'ordre deux”, Commentarii math. helvetici, 47 (1972), 15–35 | DOI | MR | Zbl
[98] F. Ronga, “La classe duale aux points doubles d'une application”, Compositio Math., 27 (1973), 223–232 | MR | Zbl
[99] L. Roth, “Some formulae for primals in four dimensions”, Proc. Lond. Math. Soc., 35:2 (1933), 540–550 | DOI
[100] C. P. Ramanujam, “On a geometric interpretation of multiplicity”, Inventiones Math., 22 (1973/74), 63–67 | DOI | MR | Zbl
[101] H. C. H. Schubert, Kalkul der abzählenden Geometrie, Teubner, Leipzig, 1879 | Zbl
[102] C. Segre, “Mehrdimensionale Räume”, Encyclopädie der Mathematischen Wissenschaften mit einschluss ihrer anwendungen, III, 2, 2, C7, B. G. Teubner, Leipzig, 1921–1934, 669–972, (Abgeschlossen Ende 1912)
[103] P. Berthelot, Théorie des intersections et théorème de Riemann-Roch, Springer lecture notes in math., 225, 1971 (with et al.) | MR
[104] P. Deligne, N. Katz, Groupes de monodromie en geometrie algebrique, Springer lecture notes in math., 340, 1973 | MR
[105] P. Samuel, “Relations d'équivalence en géométrie algébrique”, Proc. Internat. Congress of Math., Cambridge, England, 1958
[106] P. Samuel, L'equivalence rationelle et le “moving lemma”, Preprint, 1971
[107] J. P. Serre, Algébre locale, Multiplicités, Lecture notes in math., 11, Springer-Verlag, 1965 | MR | Zbl
[108] J. P. Serre, “Groups algebriques et corps de classes”, Publ. Math. Univ. Nancago, VII, Hermann, Paris, 1959 | MR | Zbl
[109] F. Sergeraert, “Expression explicite de certains polynomes de Thom”, Comptes Rendus Acad. Sci. Paris, 276 (1973), 1661–1663 | MR | Zbl
[110] R. L. E. Schwarzenberger, “The secant bundle of a projective variety”, Proc. London Math. Soc., 14:3 (1964), 369–384 | DOI | MR | Zbl
[111] J. A. Todd, “Canonical systems on algebraic varieties”, Bol. Soc. Mat. Mexicana, 1957, no. 2, 26–44 | MR | Zbl
[112] B. Teissier, “Cycles évanescents, sections planes, et conditions de Witney”, Astérisque, 7, 8 (1973), 285–362 | MR
[113] B. Teissier, Sur diverses conditions numériques d'équisingularité des familles de courbes (et un principe de specialisation de la dépendance intégrale, Preprint
[114] I. Vainsencher, “A numerical criterion for hypersurfaces”, Advances in Math., 19 (1976), 289–291 | DOI | MR | Zbl
[115] I. Vainsencher, On a formula of Ingleton and Scott, Preprint | MR
[116] I. Vainsencher, On the formula of the de Jonquiéres for multiple contacts, Doctoral thesis, M. I. T., 1976
[117] I. Vainsencher, “Conics in characteristic 2”, Comp. math., 36 (1978), 101–112 | MR | Zbl
[118] A. H. Wallace, “Tangency and duality over arbitrary fields”, Proc. London Math. Soc., 6:3 (1956), 321–342 | DOI | MR | Zbl
[119] H. G. Zeuthen, M. Pieri, “Géométrie enumérative”, Encyclopédie des sciences mathématiques, III, 2, Teubner, Leipzig, 1915, 260–331
[120] O. Zariski, Collected papers. Vol. I: Foundations of algebraic geometry and resolution of singularities, eds. H. Hironaka, D. Mumford, M. I. T. Press, 1972 | MR | Zbl
[121] J. L. Coolidge, A treatise on algebraic plane curves, Dover Publ, New York, 1959 | MR | Zbl
[122] A. Douady, J. L. Verdier, “Séminaire de géométric analytique”, Asterisque, 1976, 36–37
[123] F. Severi, “Sulle interregioni delle varietà algebreche e sopra i loro caratteri e singularità proiettive”, Memorie della R. Acc. della Scienze di Torino, 52 (1902), 61–118
[124] S. L. Kleiman, J. Landolfi, “Geometry and deformation of special Schubert varieties”, Algebraic geometry (Oslo 1970), ed. F. Oort, Wolters-Noordhoff Publ., Groningen, 1972 | MR
[125] W. Fulton, R. MacPherson, Intersecting cycles on an algebraic variety, Aarhus Univ. Preprint, Series 1976/77 No 14 | MR
[126] S. L. Kleiman, “Muitiple-point formulas. I: Iteration”, Act. Math.