Some properties of partially ordered topological vector spaces and algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 34 (1979) no. 6, pp. 184-187 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1979_34_6_a22,
     author = {A. V. Mironov},
     title = {Some properties of~partially ordered topological vector spaces and algebras},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {184--187},
     year = {1979},
     volume = {34},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1979_34_6_a22/}
}
TY  - JOUR
AU  - A. V. Mironov
TI  - Some properties of partially ordered topological vector spaces and algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1979
SP  - 184
EP  - 187
VL  - 34
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1979_34_6_a22/
LA  - en
ID  - RM_1979_34_6_a22
ER  - 
%0 Journal Article
%A A. V. Mironov
%T Some properties of partially ordered topological vector spaces and algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1979
%P 184-187
%V 34
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1979_34_6_a22/
%G en
%F RM_1979_34_6_a22
A. V. Mironov. Some properties of partially ordered topological vector spaces and algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 34 (1979) no. 6, pp. 184-187. http://geodesic.mathdoc.fr/item/RM_1979_34_6_a22/

[1] G. Jameson, Ordered linear spaces, Lecture Notes in Math., 141, Springer-Verlag, Berlin, Heidelberg, New York, 1970 | MR | Zbl

[2] I. Namioka, “Partially ordered linear topological spaces”, Mem. Amer. Math. Soc., 1957, no. 24, 1–50 | MR

[3] L. Nachbin, Topology and order, Van Nostrand Mathematical Studies, 4, Princeton, New Jersey, Toronto, New York, London, 1965 | MR

[4] A. L. Peressini, Ordered topological vector Spaces, New York, Evanston, London, 1967 | MR | Zbl

[5] X. Shefer, Topologicheskie vektornye prostranstva, Mir, M., 1971 | MR

[6] G. R. Allan, “A spectral theory for locally convex algebras”, Proc. London Math. Soc. (3), 15 (1965), 399–421 | DOI | MR | Zbl

[7] M. G. Krein, M. A. Rutman, “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, UMN, 3:1(23) (1948), 3–95 | MR | Zbl

[8] A. V. Mironov, “Ogranichennost i nepreryvnost poryadkovo ogranichennykh lineinykh otobrazhenii”, Funkts. analiz, sb. nauchnykh trudov Tashkentskogo un-ta, 1978, no. 573, 39–42 | MR

[9] A. V. Mironov, B. T. Sarymsakov, “O nekotorykh svoistvakh polozhitelnykh otobrazhenii topologicheskikh poluuporyadochennykh grupp i vektornykh prostranstv”, Funkts. analiz, sb. nauchnykh trudov Tashkentskogo un-ta, 1978, no. 573, 42–50 | MR

[10] D. D. Shulga, “Nekotorye svoistva uporyadochennykh $\alpha$-prostranstv”, Funkts. analiz, sb. nauchnykh trudov Tashkentskogo un-ta, 1978, no. 573, 96–102 | MR

[11] D. D. Shulga, “Nepreryvnost $o$-ogranichennykh otobrazhenii”, Funkts. analiz, sb. nauchnykh trudov Tashkentskogo un-ta, 1978, no. 573, 102–106 | MR