Homeomorphisms of product spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 34 (1979) no. 6, pp. 144-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1979_34_6_a15,
     author = {V. Trnkova},
     title = {Homeomorphisms of~product spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     pages = {144--160},
     year = {1979},
     volume = {34},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RM_1979_34_6_a15/}
}
TY  - JOUR
AU  - V. Trnkova
TI  - Homeomorphisms of product spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1979
SP  - 144
EP  - 160
VL  - 34
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1979_34_6_a15/
LA  - en
ID  - RM_1979_34_6_a15
ER  - 
%0 Journal Article
%A V. Trnkova
%T Homeomorphisms of product spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1979
%P 144-160
%V 34
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1979_34_6_a15/
%G en
%F RM_1979_34_6_a15
V. Trnkova. Homeomorphisms of product spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 34 (1979) no. 6, pp. 144-160. http://geodesic.mathdoc.fr/item/RM_1979_34_6_a15/

[1] J. Adámek, V. Koubek, “On representations of ordered commutative semigroups,”, Algebraic theory of semigroups, Proc. Sixth Algebraic Conf. (Szeged, 1976), Colloq. Math. Soc. János Bolyai, 20, North-Holland, Amsterdam, 1979, 15–31 | MR

[2] A. V. Arkhangelskii, V. I. Ponomarev, Osnovy obschei topologii v zadachakh i upravleniyakh, Nauka, M., 1974 | MR

[3] R. H. Bing, “The cartesian product of a certain non-manifold and a line is $E_4$”, Ann. of Math. (2), 70 (1959), 399–412 | DOI | MR | Zbl

[4] S. D. Comer, “Arithmetic properties of relatively free products”, Proc. Univ. of Houston (Lattice Theory Conf.), Houston, 1973, 180–193 | MR | Zbl

[5] H. Cook, “Continua which admit only the identity mapping onto non-degenerate subcontinua”, Fund. Math., 60 (1967), 241–249 | MR | Zbl

[6] R. H. Fox, “On a problem of $S$. Ulam concerning Cartesian products”, Fund. Math., 34 (1947), 278–287 | MR | Zbl

[7] H. Herrlich, “Wann sind alle stetigen Abbildungen in $Y$ konstant?”, Math. Z., 90 (1965), 152–154 | DOI | MR | Zbl

[8] E. Hewitt, “On two problems of Urysohn”, Ann. Math., 47 (1946), 503–509 | DOI | MR | Zbl

[9] M. M. Marjanović, “Numerical invariant of $O$-dimensional spaces and their Cartesian multiplication”, Publ. de l'Institut Mathematique, Nouvelle série, 1974, no. 17(31), 113–120 | MR | Zbl

[10] J. Novák, “Regular space on which every continuous function is constant”, Casopis pro Pěst. Matem., 73 (1948), 58–68 | MR | Zbl

[11] V. Trnková, “$X^n$ is homeomorphic to $X^m$ iff $n\sim m$, where $\sim$ is a congruence on natural numbers”, Fund. Math., 80 (1973), 51–56 | MR | Zbl

[12] V. Trnkova, “Vse malye kategorii predstavimy nepreryvnymi nepostoyannymi otobrazheniyami bikompaktov”, DAN, 230 (1976), 789–791 | MR | Zbl

[13] V. Trnková, “Gategorial aspects are useful for topology”, General Topology and Its Relations to Modern Analysis and Algebra (Proceedings of the fourth Prague topological symposium, 1976), Lecture Notes in Math., 609, Springer Verlag, 1977, 211–225 | MR

[14] V. Trnková, “Productive representations of semigroups by pairs of structures”, Comment. Math. Univ. Carolinae, 18 (1977), 383–391 | MR | Zbl

[15] V. Trnkova, “Isomorphism of products and representation of commutative semigroups”, Algebraic theory of semigroups, Proc. Sixth Algebraic Conf. (Szeged, 1976), Colloq. Math. Soc. János Bolyai, 20, North-Holland, Amsterdam, 1979, 657–683 | MR

[16] V. Trnkova, “Proizvedeniya schetnykh prostranstv”, DAN, 1980

[17] V. Trnková, “Isomorphisms of sums of countable Boolean algebras” (to appear)

[18] V. Trnková, “Homeomorphisms of powers of metric spaces” (to appear)

[19] V. Trnková, V. Koubek, “Isomorphisms of sums of Boolean Algebras”, Proc. Amer. Math. Soc., 66 (1977), 231–236 | DOI | MR | Zbl

[20] S. Ulam, “Problem”, Fund. Math., 20 (1933), 285

[21] J. Vinárek, “Representations of countable commutative semigroups by products of weakly homogeneous spaces” (to appear) | MR

[22] J. H. C. Whitehead, “On the homotopy type of manifolds”, Ann. of Math., 41 (1940), 825–832 | DOI | MR | Zbl