Function theory on differentiable submanifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 33 (1978) no. 1 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1978_33_1_a22,
     author = {R. O. Wells and Jr},
     title = {Function theory on differentiable submanifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1978},
     volume = {33},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1978_33_1_a22/}
}
TY  - JOUR
AU  - R. O. Wells
AU  - Jr
TI  - Function theory on differentiable submanifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1978
VL  - 33
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_1978_33_1_a22/
LA  - ru
ID  - RM_1978_33_1_a22
ER  - 
%0 Journal Article
%A R. O. Wells
%A Jr
%T Function theory on differentiable submanifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1978
%V 33
%N 1
%U http://geodesic.mathdoc.fr/item/RM_1978_33_1_a22/
%G ru
%F RM_1978_33_1_a22
R. O. Wells; Jr. Function theory on differentiable submanifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 33 (1978) no. 1. http://geodesic.mathdoc.fr/item/RM_1978_33_1_a22/

[1] A. Andreotti, C. D. Hill, “E. E. Levi convexity and the Hans Lewy problem, I: Reduction to vanishing theorems”, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 325–363 | MR | Zbl

[2] A. Andreotti, G. D. Hill, “E. E. Levi convexity and the Hans Lewy problem, II: Vanishing theorems”, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 747–806 | MR | Zbl

[3] A. Andreotti, C. D. Hill, “Complex characteristic coordinates and tangential Cauchy–Riemann equations”, Ann. Scuola Norm. Sup. Pisa, 26 (1972), 294–324 | MR

[4] H. Behnke, P. Thullen, Theorie der Funktionen mehrerer Komplexer Veranderlichen, Springer-Verlag, Berlin, New York, 1970, 2nd ed | MR | Zbl

[5] F. T. Birtel, “Holomorphic approximations”, Notices Amer. Math. Soc., 20 (1973), 73T-B16

[6] F. T. Birtel, Algebras of holomorphic functions, Lecture Notes, Tulane Univ., New Orleans, Lousiana, 1972 | Zbl

[7] F. Birtel, W. Zame, Some analytic function algebras (Symposium on Several Complex Variables, Park City, Utah, 1970), Lecture Notes in Math., 184, Springer-Verlag, Berlin, New York, 1971 | MR

[8] E. Bishop, “Differentiable manifolds in complex Euclidean space”, Duke Math. J., 32 (1965), 1–22 | DOI | MR

[9] J. E. Bjork, “Holomorphic convexity and analytic structures in Banach algebras”, Ark. Matem., 9 (1971), 39–54 | DOI | MR

[10] S. Bochner, “Analytic and mermorphic continuation by means of Green's formula”, Ann. of Math., 44 (1943), 652–673 | DOI | MR | Zbl

[11] S. Bochner, W. T. Martin, Several Complex Variables, Princeton Univ. Press, New Jersey, Princeton, 1948 | MR | Zbl

[12] A. B. Brown, “On certain analytic continuations and analytic homemorphisms”, Duke Math. J., 2 (1936), 20–28 | DOI | MR | Zbl

[13] R. Carmignani, “Envelopes of holomorphy and holomorphic convexity”, Trans. Amer. Math. Soc., 179 (1973), 415–431 | DOI | MR | Zbl

[14] S. S. Ghern, E. Spanier, “A theorem on orientable surfaces in four-dimensional space”, Comment. Math. Helv., 25 (1951), 205–209 | DOI | MR

[15] E. M. Chirka, “Priblizhenie golomorfnymi funktsiyami na gladkikh mnogoobraziyakh v $\mathbb{C}^n$”, Matem. sb., 78(120):1 (1969), 101–123 | Zbl

[16] L. Ehrenpreis, “A new proof and an extension of Hartogs' theorem”, Bull. Amer. Math. Soc., 67 (1961), 507–509 | DOI | MR | Zbl

[17] G. Fichera, “Caratterizzazione della traccia, sulla frontiera di un campo, di una funzione analitica di piu variabili complesse”, Atti Accad, Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8), 22 (1957), 706–715 | MR | Zbl

[18] G. B. Folland, “The tangential Cauchy–Riemann complex on spheres”, Trans. Amer. Math. Soc., 171 (1972), 83–133 | DOI | MR | Zbl

[19] G. B. Folland, J. J. Kohn, The Neumann Problem for the Cauchy–Riemann Complex, Ann. Math. Studies, 75, Princeton Univ. Press., New Jersey, Princeton, 1972 | MR | Zbl

[20] M. Freeman, “Some conditions for uniform approximation on a manifold”, Function Algebras, ed. F. Birtel, Scott–Foresman, Chicago, Illinois, 1966 | MR

[21] M. Freeman, “Uniform approximation on a real-analytic manifold”, Trans. Amer. Math. Soc., 143 (1969), 545–553 | DOI | MR | Zbl

[22] M. Freeman, “Local holomorphic convexity of a two-manifold in $\mathbb{C}^2$”, Complex Analysis (Proc. Conf., Rice Univ., Houston, Tex., 1969), Rice Univ. Stud., 56, no. 2, 1970, 171–180 | MR | Zbl

[23] M. Freeman, “Tangential Cauchy–Riemann equations and uniform approximation”, Pacific J. Math., 33 (1970), 101–108 | MR | Zbl

[24] M. Freeman, “The uniform algebra generated by $z$ and $a$ smooth even function”, Math. Ann., 196 (1972), 269–274 | DOI | MR | Zbl

[25] M. Freeman, “The polynomial hull of a thin two-manifold”, Pacif. J. Math., 38 (1971), 377–389 | MR | Zbl

[26] M. Freeman, R. Harvey, “A compact set that is locally holomorphically convex but not holomorphically convex”, Pacific J. Math., 48 (1973), 77–81 | MR | Zbl

[27] T. W. Gamelin, Uniform Algebras, Englewcod Cliff, New Jersey, Prentice-Hall, 1969 | MR | Zbl

[28] T. W. Gamelin, “Polynomial approximation on thin sets”, Symposium on Several Complex Variables (Park City, Utah, 1970), Lecture Notes in Math., 184, Springer-Verlag, Berlin, New York, 1971, 50–78 | MR

[29] H. Grauert, “On Levi's problem and the imbedding of real-analytic manifolds”, Ann. of Math., 68 (1958), 460–472 | DOI | MR | Zbl

[30] H. Grauert, “Bemerkenswerte pseudokonvexe Mannigfaltigkeiten”, Math. Z., 81 (1963), 377–391 | DOI | MR | Zbl

[31] H. Grauert, I. Lieb, “Das Ramirezsche Integral und die Losung der Gleichung $\bar\partial f=\alpha$ im Bereich der beschrankten Formen”, Rice Univ. Studies., 56:2 (1970), 29–50 | MR | Zbl

[32] S. J. Greenfield, “Cauchy–Riemann equations in several variables”, Ann. Scuola Norm. Sup. Pisa, 22 (1968), 275–314 | MR | Zbl

[33] S. J. Greenfield, “Upper bounds on the dimensions of extendibility of submanifolds in $\mathbb{C}^n$”, Proc. Amer. Math. Soc., 23 (1969), 185–189 | DOI | MR | Zbl

[34] S. J. Greenfield, “Most tori are extendible to an open set”, Duke Math. J., 38 (1970), 485–487 | DOI | MR

[35] S. J. Greenfield, M. Menn, “Extendibility and transversality”, J. Differential Geometry, 7 (1972), 461–472 | MR | Zbl

[36] S. J. Greenfiel, N. Wallach, “Extendibility properties of submanifolds of $\mathbb{C}^2$”, Proc. Carolina Conf. Holomorphic Mappings and Minimal Surfaces, Univ. of North Carolina, Chapel Hill, 1970, 77–85 | MR

[37] R. C. Gunning, H. Rossi, Analytic Functions of Several Complex Variables, Engiewood Cliffs, Prentice-Hall, New Jersey, 1965 | MR | Zbl

[38] F. R. Harvey, “The theory of hyperfunctions on totally real subsets of a complex manifold with applications to extension problem”, Amer. J. Math., 91 (1969), 853–873 | DOI | MR | Zbl

[39] F. R. Harvey, H. B. Lawson, “Boundaries of complex-analytic varieties”, Ann. of Math., 102 (1975), 223–290 | DOI | MR | Zbl

[40] F. R. Harvey, R. O. Wells, “Compact holomorphically convex subsets of a Stein manifold”, Trans. Amer. Math. Soc., 136 (1969 509–516) | DOI | MR | Zbl

[41] F. R. Harvey, R. O. Wells, “Holomorphic approximation and hyperfunction theory on a $C^1$ totally real submanifold of a complex manifold”, Math. Ann., 197 (1972), 287–318 | DOI | MR | Zbl

[42] F. R. Harvey, R. O. Wells, “Zero sets of nonnegative strictly plurisubharmonic functions”, Math. Ann., 201 (1973), 165–170 | DOI | MR | Zbl

[43] H. Helson, F. Quigley, “Existence of maximal ideals in algebras of continuous functions”, Proc. Amer. Math. Soc., 8 (1957), 115–119 | DOI | MR | Zbl

[44] G. M. Khenkin, “Integralnoe predstavlenie funktsii v strogo psevdovypuklykh oblastyakh i nekotorye prilozheniya”, Matem. sb., 78(120) (1969), 611–632 | Zbl

[45] G. M. Xenkin, “Integralnoe predstavlenie funktsii v strogo psevdovypuklykh oblastyakh i prilozhenie k $\bar\partial$-zadache”, Matem. sb., 82(124) (1970), 300–308

[46] G. M. Xenkin, “Ravnomernaya otsenka resheniya $\bar\partial$-zadachi v oblasti Veilya”, UMN, 26:5(161) (1971), 211–212

[47] R. Hermann, “Convexity and pseudo convexity for complex manifolds”, J. Math. Mech., 43 (1964), 667–672 | MR

[48] C. D. Hill, “A Kontinuitatssatz for $\bar\partial_M$ and Lewy extendability”, Indiana Univ. Math. J., 22 (1972), 339–353 | DOI | MR | Zbl

[49] L. Hörmander, “$L^2$ estimates and existence theorems for the operator”, Acta Math., 113 (1965), 89–152 | DOI | MR | Zbl

[50] L. Hörmander, An Introduction to Complex Analysis in Several Variables, Van Nostrand–Reinhold, Princeton, New Jersey, 1966 | MR | Zbl

[51] L. Hörmander, J. Wermer, “Uniform approximation on compact subsets in $\mathbb{C}^n$”, Math. Scand., 23 (1968), 5–21 | MR | Zbl

[52] L. R. Hunt, “The local envelope of holomorphy of an $n$-manifold in $\mathbb{C}^n$”, Boll. Un. Matem. Ital., 4 (1971), 12–35 | MR | Zbl

[53] L. R. Hunt, “Real-analytic submanifolds of complex manifolds”, Proc. Amer. Math. Soc., 29 (1971), 69–74 | DOI | MR | Zbl

[54] L. R. Hunt, “An extension of a theorem of Hartogs”, Trans. Amer. Math. Soc., 16 (1972), 491–495 | DOI | MR

[55] L. R. Hunt, “Locally holomorphic sets and the Levi form”, Pacific J. Math., 42 (1972), 681–688 | MR | Zbl

[56] L. R. Hunt, R. O. Wells, “The envelope of holomorphy of a two-manifold in $\mathbb{C}^2$”, Rice Univ. Studies, 56:2 (1970), 51–62 | MR

[57] N. Kerzman, “Hölder and $L^p$ estimates for solutions of $\partial u=f$ strongly pseudoconvex domains”, Comm. Pure Appl. Math., 24 (1971), 301–379 | DOI | MR

[58] J. J. Kohn, “Boundaries of complex manifolds”, Proc. Conf. Complex Analysis (Minneapolis, Minnesota, 1964), Springer-Verlag, Berlin, New York, 1965, 81–94. | MR

[59] J. J. Kohn, “Integration of complex vector fields”, Bull. Amer. Math. Soc., 78 (1972), 1–11 | DOI | MR | Zbl

[60] J. J. Kohn, H. Rossi, “On the extension of holomorphic functions from the boundary of a complex manifold”, Ann. of Math., 81 (1965), 451–472 | DOI | MR | Zbl

[61] H. Komatsu, “Boundary values for solutions of elliptic equations”, Proc. Internat. Conf. Functional Analy. Related Topics (Tokyo, 1969), Univ. of Tokyo Press, Tokyo, 1970, 107–121 | MR

[62] H. F. Lai, “Characteristic classes of real manifolds immersed in complex manifolds”, Trans. Amer. Math. Soc., 172 (1972), 1–33 | DOI | MR

[63] P. Landweber, “Complex structures on open manifolds”, Topology, 13:1 (1974), 69–73 | DOI | MR

[64] H. Lewy, “On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables”, Ann. of Math., 64 (1956), 514–522 | DOI | MR | Zbl

[65] H. Lewy, “On hulls of holomorphy”, Comm. Pure Appl. Math., 13 (1960), 587–591 | DOI | MR | Zbl

[66] I. Lieb, “Ein Approximationssatz auf streng pseudokonvexen Gebieten”, Math. Ann., 184 (1969), 56–60 | DOI | MR | Zbl

[67] I. Lieb, “Die Cauchy–Riemannsche Differentialgleichung auf streng pseudoconvexen Gebieten, Beschrankte Losungen”, Math. Ann., 190 (1970), 6–44 | DOI | MR | Zbl

[68] E. Martinelli, “Sopra una dimonstrazione di R. Fueter per un teorema di Hartogs”, Comment. Math. Helv., 15 (1942), 340–349 | DOI | MR

[69] C. N. Mergelyan, “Ravnomernoe priblizhenie funktsii kompleksnogo peremennogo”, UMN, 8:4 (1953), 3–63 | MR | Zbl

[70] I. Naruki, “Analutic study of a pseudoconvex structure”, Proc. Internat. Conf. Functional Analy. Related Topics (Tokyo, 1969), Univ. of Tokyo Press, Tokyo, 1970 | MR | Zbl

[71] I. Naruki, “Localization principles for differential complexes and its applications”, Publ. Res. Inst. Math. Kyoto, ser. A, 8:1 (1972), 43–110 | DOI | MR | Zbl

[72] L. Nirenberg, Lectures on Linear Partial Differential Equations (Texas Tech., Lubbock, Texas, Spring 1972), CBMS Regional Conf., Amer. Math. Soc., Rhode Island, Providence, 1972 | MR

[73] R. Nirenberg, “On the H. Lewy extension phenomenon”, Trans. Amer. Math. Soc., 168 (1972), 337–356 | DOI | MR | Zbl

[74] R. Nienberg, “The cohomology of restrictions of the $\bar\partial$-complex”, Bull. Am. Math. Soc., 79:1 (1973), 107–109 | DOI | MR

[75] R. Nirenberg, R. O. Wells, “Approximation theorems on differentiable submanifolds of a complex manifold”, Trans. Amer. Math. Soc., 142 (1969), 15–35 | DOI | MR | Zbl

[76] G. Orr, Holomorphic approximations on special analytic polyhedra, Ph. D. Thesis, Tulane Univ., New Orleans, Louisiana, 1971

[77] N. Ovrelid, “Integral representation formulas and $L^p$ estimates for the $\bar\partial$-equation”, Math. Scand., 29 (1971), 137–160 | MR

[78] A. I. Petrosyan, “Ravnomernoe priblizhenie funktsii polinomami na poliedrakh Veilya”, Izv. AN, ser. matem., 34:6 (1970), 1241–1261 | Zbl

[79] J. C. Polking, R. O. Wells, Boundary Values of Dolbeault cohomology closses and a generalized Bochner–Hartogs theorem, Proc. Symp. in Pure Math., 30, 1977 | Zbl

[80] E. Ramirez de Arellano, “Ein Divisionsproblem und Randintegraldarstellungen in der komplexen Analysis”, Math. Ann., 184 (1970), 172–187 | DOI | MR | Zbl

[81] R. M. Range, “Approximation to bounded holomorphic functions on strictly pseudo convex domains”, Pacific J. Math., 41 (1972), 203–213 | MR | Zbl

[82] R. M. Range, Y. T. Siu, “Uniform estimates for the $\bar\partial$-equation on intersections of strictly pseudoconvex domains”, Bull. Amer. Math. Soc., 78 (1972), 721–723 | DOI | MR | Zbl

[83] H. Rossi, “On envelopes of holomorphy”, Comm. Pure Appl. Math., 16 (1963), 9–19 | DOI | MR

[84] H. Rossi, “Differentiable manifolds in complex Euclidean space”, Proc. Internat. Congr. Math. (Moscow, 1966), Moscow, 1968, 512–516 | MR | Zbl

[85] H. Rossi, “A generalization of a theorem of Hans Lewy”, Proc. Amer. Math. Soc., 19 (1968), 436–440 | DOI | MR | Zbl

[86] H. Rossi,, “Homogeneous strongly pseudoconvex hypersurfaces”, Proc. Conf. Complex Anal. (Rice Univ., 1972), Rice Univ. Studies, 59, no. 1, 1973, 131–145 | MR | Zbl

[87] H. Rossi, G. Stolzenberg, “Analytic function algebras”, Function Algebras, ed. F. Birtel, Scott-Foresman, Chicago, Illinois, 1965 | MR

[88] W. Rudin, E. Stout, “Modules over Polydisc Algebras”, Trans. Amer. Math. Soc., 138 (1969), 327–342 | DOI | MR | Zbl

[89] A. Sakai, “Localization theorem for holomorphic approximation on open Riemann surfaces”, J. Math. Soc. Japan, 24 (1972), 189–197 | MR | Zbl

[90] A. Sakai, Uniform approximation on compact subsets of complex manifolds, Preprint, 1974

[91] W. Schmid, “Die Randwerte holomorpher Funktionen auf hermitesch symmetrischen Raumen”, Invent. Math., 9 (1969/1970), 61–80 | DOI | MR | Zbl

[92] F. Severi, “Una proprieta fondamentale dei campi di olomorphisma di una funzione analitica di una variable reale e di una variabile complexa”, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur (6), 15 (1932), 487–490 | Zbl

[93] F. Sommer, “Komplex analytische Blatterung reeler Manningfaltigkeiten in $\mathbb{C}^n$”, Math. Ann., 136 (1958), 111–113 | DOI | MR

[94] K. Stein, “Zur theorie der Funktionen mehrerer komplexer Veranderlichen, Die Regularitatshullen niederdimensionaler Mannigfaltigkeiten”, Math. Ann., 114 (1937), 543–569 | DOI | MR | Zbl

[95] G. Tomassini, “Tracce delle funzioni olomorfe sulle sottovarieta analitiche reali d'una varieta complessa”, Ann. Scuola Norm. Sup. Pisa, 20 (1966), 31–43 | MR | Zbl

[96] A. G. Vitushkin, “Analiticheskaya emkost mnozhestv v zadachakh teorii priblizhenii”, UMN, 22:6 (1967), 141–199 | MR

[97] B. Weinstock, On holomorphic extension from real submanifolds of complex Euclidean space, Ph. D. Thesis, M.I.T., Cambridge, Massachusetts, 1966

[98] B. Weinstock, “Continuous boundary values of analytic functions of several complex variables”, Proc. Amer. Math. Soc., 21 (1969), 463–466 | DOI | MR | Zbl

[99] B. Weinstock, “An approximation theorem for $\partial$-closed forms of type $(n,n-1)$”, Proc. Amer. Math. Soc., 26 (1970), 625–628 | DOI | MR | Zbl

[100] B. Weinstock, “Approximation by holomorphic functions on certain product sets in $\mathbb{C}^n$”, Pacific J. Math., 43 (1972), 811–824 | MR

[101] R. O. Wells, “On the local holomorphic hull of a real submanifold in several complex variables”, Comm. Pure Appl. Math., 19 (1966), 145–165 | DOI | MR | Zbl

[102] R. O. Wells, “Holomorphic approximation on real-analytic submanifolds of a complex manifolds”, Proc. Amer. Math. Soc., 17 (1966), 1272–1275 | DOI | MR | Zbl

[103] R. O. Wells, “Holomorphic convexity of differentiable submanifolds”, Trans. Amer. Math. Soc., 132 (1968), 245–262 | DOI | MR | Zbl

[104] R. O. Wells, “Compact real submanifolds with nondegenerate holomorphic tangent bundles”, Math. Ann., 179 (1969), 123–129 | DOI | MR | Zbl

[105] R. O. Wells, “Real-analytic subvarieties and holomorphic approximation”, Math. Ann., 179 (1969), 130–141 | DOI | MR | Zbl

[106] R. O. Wells, “Holomorphic hulls and holomorphic convexity”, Complex Analysis, Proc. Conf. Complex Anal. (Rice Univ., 1967), Rice Univ. Studia, 54, 1968, 75–84 | MR | Zbl

[107] R. O. Wells, “Concerning the envelope of holomorphy of a compact differentiable submanifold of a complex manifold”, Ann. Scuola Norm. Sup. Pisa, 23 (1969), 347–361 | MR | Zbl

[108] J. Wermer, “The hull of a curve in $\mathbb{C}^n$”, Ann. of Math., 68:3 (1958), 550–561 | DOI | MR | Zbl

[109] J. Wermer, “Banach algebras and analytic functions”, Advances in Math., 1 (1961), 51–102, Fasc. 1 | DOI | MR | Zbl

[110] J. Wermer, Banach Algebras and Several Complex Variables, Markham Publ., Chicago, Illinois, 1971 | MR | Zbl

[111] W. Zame, Stable algebras of holomorphic germs, Thesis, Tulane Univ., New Orleans, Louisiana, 1970

[112] R. Basener, “On rationally convex hulls”, Trans. Amer. Math. Soc., 182 (1973), 353–381 | DOI | MR | Zbl

[113] J. E. Bjork, A class of uniform algebras for which the peak point conjecture is true, Preprint, University of Stockholm, 1974

[114] K. Diederich, J. E. Fornaess, “A strange bounded smooth domain of holomorphy”, Bull. Amer. Math. Soc., 82:1 (1976), 74–76 | DOI | MR | Zbl

[115] L. R. Hunt, R. O. Wells, “Holomorphic extension for nongeneric $CR$-suhmanifolds”, Proc. Symp. in Pure Math., 27 (1975), 81–88 | MR | Zbl

[116] L. R. Hunt, R. O. Wells, “Extensions of $CLR$ functions”, Amer. J. Math., 98:3 (1976), 805–820 | DOI | MR | Zbl

[117] R. M. Range, Y. T. Siu, “Approximation by Holomorphic Functions and $\bar\partial$-Closed Forms on $C^k$ submanifolds of a complex manifold”, Math. Ann., 210 (1974), 105–122 | DOI | MR | Zbl

[118] V. N. Senichkin, “Primer tolstogo polinomialno vypuklogo kompaktnogo podmnozhestva prostranstva $\mathbb{C}^2$ so svyaznoi vnutrennostyu, na kotorom ne vsyakuyu nepreryvnuyu funktsiyu, analogichnuyu vo vnutrennikh tochkakh, mozhno ravnomerno priblizit mnogochlenami”, Zap. nauchn. seminarov LOMI AN, 22, 1971, 199–201 | Zbl

[119] G. M. Xenkin, “Uravnenie G. Levi i analiz na psevdovypuklom mnogoobrazii”, UMN, 32:3 (1977), 57–118 | MR | Zbl

[120] G. M. Xenkin, E. M. Chirka, “Granichnye svoistva golomorfnykh funktsii neskolkikh kompleksnykh peremennykh”, Sovremennye problemy matematiki, 4, VINITI, M., 1975, 13–142

[121] E. M. Chirka, “Analiticheskoe predstavlenie $CR$-funktsii”, Matem. sb., 98(140):4 (1975), 591–623 | MR | Zbl

[122] H. Rossi, M. Vergne, “Equations de Cauchy–Riemann tangentiells assonees à un domaine de Siegel”, Ann de l'Ecole Normal Supérieure, 9:1 (1976), 31–80 | MR | Zbl

[123] H. Rossi, M. Vergne, “Group representations on Hilbert spaces defined in terms of $\partial_b$-cohomology on the Silov boundary of a Siegel domain”, Pacific J. Math., 65:1 (1976), 193–207 | MR | Zbl