The classical limit of solutions of the Cauchy problem for hypoelliptic Weyl symbols
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1977_32_5_a6,
     author = {M. A. Antonets},
     title = {The classical limit of solutions of the {Cauchy} problem for hypoelliptic {Weyl} symbols},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1977},
     volume = {32},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1977_32_5_a6/}
}
TY  - JOUR
AU  - M. A. Antonets
TI  - The classical limit of solutions of the Cauchy problem for hypoelliptic Weyl symbols
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1977
VL  - 32
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1977_32_5_a6/
LA  - ru
ID  - RM_1977_32_5_a6
ER  - 
%0 Journal Article
%A M. A. Antonets
%T The classical limit of solutions of the Cauchy problem for hypoelliptic Weyl symbols
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1977
%V 32
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1977_32_5_a6/
%G ru
%F RM_1977_32_5_a6
M. A. Antonets. The classical limit of solutions of the Cauchy problem for hypoelliptic Weyl symbols. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 5. http://geodesic.mathdoc.fr/item/RM_1977_32_5_a6/

[1] F. A. Berezin, “Ob odnom predstavlenii operatorov s pomoschyu funktsionalov”, Trudy MMO, 17 (1967), 117–196 | MR | Zbl

[2] F. A. Berezin, M. A. Shubin, Lektsii po kvantovoi mekhanike, MGU, M., 1972

[3] M. A. Shubin, “Psevdodifferentsialnye operatory v $R^n$”, DAN, 196:2 (1971) | Zbl