Representations of the general linear and the affine group over a finite field
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1977_32_3_a8,
     author = {A. V. Zelevinskii},
     title = {Representations of the general linear and the affine group over a~finite field},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1977},
     volume = {32},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1977_32_3_a8/}
}
TY  - JOUR
AU  - A. V. Zelevinskii
TI  - Representations of the general linear and the affine group over a finite field
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1977
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1977_32_3_a8/
LA  - ru
ID  - RM_1977_32_3_a8
ER  - 
%0 Journal Article
%A A. V. Zelevinskii
%T Representations of the general linear and the affine group over a finite field
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1977
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1977_32_3_a8/
%G ru
%F RM_1977_32_3_a8
A. V. Zelevinskii. Representations of the general linear and the affine group over a finite field. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 3. http://geodesic.mathdoc.fr/item/RM_1977_32_3_a8/

[1] D. K. Faddeev, “Kompleksnye predstavleniya polnoi lineinoi gruppy nad konechnym polem”, Zap. nauchn. semin. LOMI, 46 (1974), 64–88 | MR | Zbl

[2] D. K. Faddeev, “O kompleksnykh predstavleniyakh polnoi affinnoi gruppy nad konechnym polem”, DAN, 230:2 (1976), 295–297 | MR | Zbl

[3] D. E. Littlewood, The theory of group characters and matrix representations of groups, Clarendon, Oxford, 1950

[4] I. N. Bernshtein, A. V. Zelevinskii, “Predstavleniya gruppy $\mathrm{GL}(n, F)$, gde $F$ — lokalnoe nearkhimedovo pole”, UMN, 31:3 (1976), 5–70 | MR

[5] A. V. Zelevinskii, “Koltso predstavlenii grupp $\mathrm{GL}(n)$ nad $p$-adicheskim polem”, Funkts. analiz, 11:3 (1977) | MR