Semiprime algebras with a one-sided ideal that satisfies a polynomial identity
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1977_32_3_a6,
     author = {I. L. Guseva},
     title = {Semiprime algebras with a one-sided ideal that satisfies a~polynomial identity},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1977},
     volume = {32},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1977_32_3_a6/}
}
TY  - JOUR
AU  - I. L. Guseva
TI  - Semiprime algebras with a one-sided ideal that satisfies a polynomial identity
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1977
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1977_32_3_a6/
LA  - ru
ID  - RM_1977_32_3_a6
ER  - 
%0 Journal Article
%A I. L. Guseva
%T Semiprime algebras with a one-sided ideal that satisfies a polynomial identity
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1977
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1977_32_3_a6/
%G ru
%F RM_1977_32_3_a6
I. L. Guseva. Semiprime algebras with a one-sided ideal that satisfies a polynomial identity. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 3. http://geodesic.mathdoc.fr/item/RM_1977_32_3_a6/

[1] L. G. Belluce, S. K. Jain, “Prime rings with a one-sided ideal, satisfying a polynomial identity”, Pacific. J. Math., 24:3 (1968), 421–424 | MR | Zbl

[2] S. K. Jain, Surjeet Singh, “Rings having one-sided ideals satisfying a polynomial identity”, Archiv der Math., 20:1 (1969), 17–23 | DOI | MR | Zbl

[3] I. N. Ilerstein, Lance W. Small, “Regular elements in $PJ$-rings”, Pacific. J. Math., 36:2 (1971), 327–330 | MR

[4] W. S. Martindale III, “On semiprime PI Rings”, Proc. Amer. Math. Soc., 40:2 (1973), 365–369 | DOI | MR | Zbl