Real homotopy theory of Kähler manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1977_32_3_a4,
     author = {P. A. Griffiths and P. Deligne and J. W. Morgan and D. Sullivan},
     title = {Real homotopy theory of {K\"ahler} manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1977},
     volume = {32},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1977_32_3_a4/}
}
TY  - JOUR
AU  - P. A. Griffiths
AU  - P. Deligne
AU  - J. W. Morgan
AU  - D. Sullivan
TI  - Real homotopy theory of Kähler manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1977
VL  - 32
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1977_32_3_a4/
LA  - ru
ID  - RM_1977_32_3_a4
ER  - 
%0 Journal Article
%A P. A. Griffiths
%A P. Deligne
%A J. W. Morgan
%A D. Sullivan
%T Real homotopy theory of Kähler manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1977
%V 32
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1977_32_3_a4/
%G ru
%F RM_1977_32_3_a4
P. A. Griffiths; P. Deligne; J. W. Morgan; D. Sullivan. Real homotopy theory of Kähler manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 3. http://geodesic.mathdoc.fr/item/RM_1977_32_3_a4/

[1] A. Bansfield, D. Kan, Homotopy limits, complections and localizations, Lecture Notes in Math., 304, Springer, Berlin–Heidelberg–New York, 1972 | MR

[2] K. T. Chen, “Algebras of interated path integrals and fundamental groups”, Trans. Amer. Math. Soc., 156 (1971), 359–379 | DOI | MR | Zbl

[3] S. S. Chern, Complex manifolds without potential theory, Van Nostrand, Princeton N. J., 1967 | MR | Zbl

[4] P. Deligne, “Theorie de Hodge, III”, Publ. Math. IHES, 44 (1974) | MR | Zbl

[5] P. Deligne, “La conjecture de Weil, I”, Publ. Math. IHES, 43 (1974), 273–307 | MR

[6] E. Friedlander, P. Griffiths, J. Morgan, Lecture Notes. De Rham Theory of Sullivan, Lecture Notes, Instituto Matematico, Florence, Italy, 1972 | Zbl

[7] A. Malcev, “Nilpotent groups without torsion”, Izv. AN, ser. matem., 13 (1949), 201–212 | MR

[8] B. G. Moisheron, “Ob $n$-mernykh kompleksnykh mnogoobraziyakh s $n$ algebraicheski nezavisimymi meromorfnymi funktsiyami. I; II; III”, Izv. AN, ser. matem., 30 (1966), 133–174 ; 345–386 ; 621–656

[9] A. Newlander, L. Nirenberg, “Complex analytic coordinates in almost complex manifolds”, Ann. of Math., 65 (1957), 391–404 | DOI | MR | Zbl

[10] D. Quillen, “Rational Homotopy Theory”, Ann. of Math., 90 (1969), 205–295 | DOI | MR | Zbl

[11] J. P. Serre, “Groupes d'homotopie et classes de groupes abéliens”, Ann. of Math., 58 (1953), 258–294 | DOI | MR | Zbl

[12] D. Sullivan, De Rham homotopy theory

[13] D. Sullivan, “Genetics of Homotopy Theory and Adams Conjecture”, Ann. of Math., 100 (1974), 1–79 | DOI | MR | Zbl

[14] D. Sullivan, “Topology of Manifolds and Differential Forms”, Proc. of Conference on Manifolds, Tokyo, Japan, 1973

[15] A. Weil, Introduction à l'étude des Variétés Kählériennes, Hermann, Paris, 1958 | Zbl

[16] J. H. S. Whitehead, “An Expression of Hopf's Invariant as an Integral”, Proc. Nat. Acad. Sci., 33 (1947), 117–123 | DOI | MR | Zbl

[17] H. Whitney, Geometric Integration Theory, Princeton University Press, 1957 | MR | Zbl

[18] H. Whitney, “On products in a Complex”, Ann. of Math., 39 (1938), 397–432 | DOI | MR | Zbl

[19] J. Morgan, The Algebraic topology of open, non singular algebraic varieties

[20] P. Deligne, “Théorème de Lefschetz et critères de dégénérescence de suites spectrales”, Publ. Math. IHES, 35 (1968), 107–126 | MR | Zbl

[21] A. N. Parshin, “Obobschennye yakobievy mnogoobraziya”, Izv. AN, 30 (1966), 175–182 | Zbl