The classification of four-dimensional compact homogeneous spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 2 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1977_32_2_a7,
     author = {V. V. Gorbatsevich},
     title = {The classification of four-dimensional compact homogeneous spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1977},
     volume = {32},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1977_32_2_a7/}
}
TY  - JOUR
AU  - V. V. Gorbatsevich
TI  - The classification of four-dimensional compact homogeneous spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1977
VL  - 32
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_1977_32_2_a7/
LA  - ru
ID  - RM_1977_32_2_a7
ER  - 
%0 Journal Article
%A V. V. Gorbatsevich
%T The classification of four-dimensional compact homogeneous spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1977
%V 32
%N 2
%U http://geodesic.mathdoc.fr/item/RM_1977_32_2_a7/
%G ru
%F RM_1977_32_2_a7
V. V. Gorbatsevich. The classification of four-dimensional compact homogeneous spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 2. http://geodesic.mathdoc.fr/item/RM_1977_32_2_a7/

[1] L. Auslander, R. Szczarba, “Characteristic classes of compact solvmanifolds”, Ann. of Math., 76:1 (1962), 1–8 | DOI | MR | Zbl

[2] L. Auslander, “An exposition of the structure of solvmanifolds”, Bull. A.M.S., 79:2 (1973), 227–262 | DOI | MR

[3] V. V. Gorbatsevich, “O klassifikatsii odnorodnykh prostranstv”, DAN, 216:5 (1974), 968–971

[4] F. Khirtsebrukh, Topologicheskie metody v algebraicheskoi geometrii, Mir, M., 1973

[5] G. Mostow, “The extensibility of local Lie groups of transformations and groups on surfaces”, Ann. Math., 52:3 (1950), 606–636 | DOI | MR | Zbl

[6] A. L. Onischik, “O gruppakh Li, tranzitivnykh na kompaktnykh mnogoobraziyakh, I”, Matem. sb., 71:4 (1966), 483–494 | Zbl

[7] P. Orlik, Seifert manifolds, Lect. Notes in Math., 291, Springer-Verlag, Berlin, 1972 | MR | Zbl