The structure of processes that are absolutely continuous with respect to a Gaussian process
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 1
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1977_32_1_a29,
author = {G. A. Mel'nichenko},
title = {The structure of processes that are absolutely continuous with respect to {a~Gaussian} process},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1977},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1977_32_1_a29/}
}
TY - JOUR AU - G. A. Mel'nichenko TI - The structure of processes that are absolutely continuous with respect to a Gaussian process JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1977 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/RM_1977_32_1_a29/ LA - ru ID - RM_1977_32_1_a29 ER -
G. A. Mel'nichenko. The structure of processes that are absolutely continuous with respect to a Gaussian process. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 1. http://geodesic.mathdoc.fr/item/RM_1977_32_1_a29/
[1] T. Hida, “Canonical representations of Gaussian processes and their applications”, Mem. Col. Sci. Univ. Kyoto, SER. A33, 1960, 109–155 | MR | Zbl
[2] G. Kallianpur, V. Mandrekar, “Multiplicity and representations theory of purely nondeterministic stochastic processes”, Teoriya veroyat. i ee primen., 10:4 (1965), 614–644 | MR | Zbl
[3] G. Kallianpur, “Canonical representation of equivalent Gaussian processes”, Sankhya 35A, 4 (1973), 405–416 | MR
[4] R. Sh. Liptser, A. N. Shiryaev, Statistika sluchainykh protsessov, Nauka, M., 1974 | MR | Zbl
[5] R. Sh. Liptser, A. N. Shiryaev, “Ob absolyutnoi nepreryvnosti mer, sootvetstvuyuschikh protsessam diffuzionnogo tipa otnositelno vinerovskogo”, Izv. AN, ser. matem., 36:4 (1972), 847–889 | Zbl