Nilpotency of commutative Engel algebras of dimension $n\leqslant 4$ over $R$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 1 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1977_32_1_a28,
     author = {Yu. I. Lyubich},
     title = {Nilpotency of commutative {Engel} algebras of dimension $n\leqslant 4$ over~$R$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1977},
     volume = {32},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1977_32_1_a28/}
}
TY  - JOUR
AU  - Yu. I. Lyubich
TI  - Nilpotency of commutative Engel algebras of dimension $n\leqslant 4$ over $R$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1977
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_1977_32_1_a28/
LA  - ru
ID  - RM_1977_32_1_a28
ER  - 
%0 Journal Article
%A Yu. I. Lyubich
%T Nilpotency of commutative Engel algebras of dimension $n\leqslant 4$ over $R$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1977
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/RM_1977_32_1_a28/
%G ru
%F RM_1977_32_1_a28
Yu. I. Lyubich. Nilpotency of commutative Engel algebras of dimension $n\leqslant 4$ over $R$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 1. http://geodesic.mathdoc.fr/item/RM_1977_32_1_a28/

[1] H. C. Myung, “A class of almost commutative nilalgebras”, Canad. J. Math., 26:5 (1974), 1192–1198 | MR | Zbl

[2] D. Suttles, “A counterexample to a conjecture of Albert”, Notices Amer. Math. Soc., 19 (1972), A-566