The lattice of regular topologies on a countable set is complemented
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 1 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1977_32_1_a17,
     author = {V. I. Malykhin},
     title = {The lattice of regular topologies on a~countable set is complemented},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1977},
     volume = {32},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1977_32_1_a17/}
}
TY  - JOUR
AU  - V. I. Malykhin
TI  - The lattice of regular topologies on a countable set is complemented
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1977
VL  - 32
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_1977_32_1_a17/
LA  - ru
ID  - RM_1977_32_1_a17
ER  - 
%0 Journal Article
%A V. I. Malykhin
%T The lattice of regular topologies on a countable set is complemented
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1977
%V 32
%N 1
%U http://geodesic.mathdoc.fr/item/RM_1977_32_1_a17/
%G ru
%F RM_1977_32_1_a17
V. I. Malykhin. The lattice of regular topologies on a countable set is complemented. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 1. http://geodesic.mathdoc.fr/item/RM_1977_32_1_a17/

[1] A. K. Steiner, “The lattice of topologies structure and complementation”, Trans. Amer. Math. Soc., 122 (1966), 379–398 | DOI | MR | Zbl

[2] A. K. Steiner, “Complementation in the lattice of $T_1$-topologies”, Proc. Amer. Math. Soc., 17:4 (1966), 884–886 | DOI | MR | Zbl

[3] J. Heubener, “Complementation in the lattice of regular topologies”, Pacific Jour. Math., 43:1 (1972), 139–149 | MR

[4] V. I. Malykhin, B. E. Shapirovskii, “Aksioma Martina i svoistva topologicheskikh prostranstv”, DAN, 213:3 (1973), 532–535 | Zbl