The lattice of regular topologies on a countable set is complemented
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 1
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1977_32_1_a17,
author = {V. I. Malykhin},
title = {The lattice of regular topologies on a~countable set is complemented},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1977},
volume = {32},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1977_32_1_a17/}
}
V. I. Malykhin. The lattice of regular topologies on a countable set is complemented. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 32 (1977) no. 1. http://geodesic.mathdoc.fr/item/RM_1977_32_1_a17/
[1] A. K. Steiner, “The lattice of topologies structure and complementation”, Trans. Amer. Math. Soc., 122 (1966), 379–398 | DOI | MR | Zbl
[2] A. K. Steiner, “Complementation in the lattice of $T_1$-topologies”, Proc. Amer. Math. Soc., 17:4 (1966), 884–886 | DOI | MR | Zbl
[3] J. Heubener, “Complementation in the lattice of regular topologies”, Pacific Jour. Math., 43:1 (1972), 139–149 | MR
[4] V. I. Malykhin, B. E. Shapirovskii, “Aksioma Martina i svoistva topologicheskikh prostranstv”, DAN, 213:3 (1973), 532–535 | Zbl