The method of the inverse scattering problem, and two-dimensional evolution equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1976_31_5_a28,
     author = {S. V. Manakov},
     title = {The method of the inverse scattering problem, and two-dimensional evolution equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1976},
     volume = {31},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1976_31_5_a28/}
}
TY  - JOUR
AU  - S. V. Manakov
TI  - The method of the inverse scattering problem, and two-dimensional evolution equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1976
VL  - 31
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1976_31_5_a28/
LA  - ru
ID  - RM_1976_31_5_a28
ER  - 
%0 Journal Article
%A S. V. Manakov
%T The method of the inverse scattering problem, and two-dimensional evolution equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1976
%V 31
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1976_31_5_a28/
%G ru
%F RM_1976_31_5_a28
S. V. Manakov. The method of the inverse scattering problem, and two-dimensional evolution equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5. http://geodesic.mathdoc.fr/item/RM_1976_31_5_a28/

[1] C. Gardner, I. Green, M. Kruskal, R. Miura, “A method for solving the Korteweg-de Vries equation”, Phys. Rev. Lett., 19 (1987), 1095–1098 | DOI

[2] B. A. Dubrovin, V. B. Matveev, S. P. Novikov, “Nelineinye uravneniya tipa Kortevega-de Friza, konechnozonnye lineinye operatory i abelevy mnogoobraziya”, UMN, 31:1 (1976), 55–136 | MR | Zbl

[3] V. E. Zakharov, A. B. Shabat, “Skhema integrirovaniya nelineinykh uravnenii matematicheskoi fiziki metodom obratnoi zadachi rasseyaniya, I”, Funkts. analiz, 8:3 (1974), 43–53 | MR | Zbl

[4] P. D. Laks, “Integraly nelineinykh uravnenii evolyutsii i uedinennye volny”, Matematika, 13:5 (1969), 128–150