An existence and uniqueness theorem for differential equations in a Hilbert space
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1976_31_5_a23,
     author = {A. N. Godunov},
     title = {An existence and uniqueness theorem for differential equations in {a~Hilbert} space},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1976},
     volume = {31},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1976_31_5_a23/}
}
TY  - JOUR
AU  - A. N. Godunov
TI  - An existence and uniqueness theorem for differential equations in a Hilbert space
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1976
VL  - 31
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1976_31_5_a23/
LA  - ru
ID  - RM_1976_31_5_a23
ER  - 
%0 Journal Article
%A A. N. Godunov
%T An existence and uniqueness theorem for differential equations in a Hilbert space
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1976
%V 31
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1976_31_5_a23/
%G ru
%F RM_1976_31_5_a23
A. N. Godunov. An existence and uniqueness theorem for differential equations in a Hilbert space. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 5. http://geodesic.mathdoc.fr/item/RM_1976_31_5_a23/

[1] A. Kartan, Differentsialnoe ischislenie. Differentsialnye formy, Mir, M., 1971 | MR | Zbl

[2] E. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[3] M. M. Vainberg, Variatsionnyi metod i metod monotonnykh operatorov v teorii nelineinykh uravnenii, Nauka, M., 1972 | MR | Zbl

[4] T. Wazewski, “Sur l'existence et l'unicité des integrales des équations différentielles ordinaires au cas de l'espace de Banach”, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys., 8:5 (1960), 301–305 | MR | Zbl

[5] C. Olech, “On the Existence and uniqueness of solution of an ordinary differential equation in the case of Banach space”, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys., 8:10 (1960), 667–673 | MR | Zbl

[6] S. Szufla, “Some remarks on ordinary differential equations in Banach spaces”, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys., 16:10 (1968), 795–800 | MR | Zbl

[7] K. Goebel, W. Rzymowski, “An existence theorem for equations $x'=f(t, x)$ in Banach space”, Bull. Acad. Polon. Sci., Sér. sci. math., astr. et phys., 18:7 (1970), 367–370 | MR | Zbl

[8] A. N. Godunov, “O teoreme Peano v banakhovykh prostranstvakh”, Funkts. analiz, 9:1 (1975), 61–62 | MR