@article{RM_1976_31_4_a15,
author = {M. S. Burgin},
title = {Varieties of linear $\Omega$-algebras},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1976},
volume = {31},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1976_31_4_a15/}
}
M. S. Burgin. Varieties of linear $\Omega$-algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 4. http://geodesic.mathdoc.fr/item/RM_1976_31_4_a15/
[1] R. C. Lyndon, “Two notes on nilpotent groups”, Proc. Amer. Math. Soc., 3 (1952), 579–583 | DOI | MR | Zbl
[2] A. I. Maltsev, Algebraicheskie sistemy, Nauka, M., 1970 | MR
[3] J. Kalicki, “The number of equationaly complete classes of equatiens”, Indag. Math., 17 (1955), 660–662 | MR
[4] K. A. Baker, “Equational classes of modular lattices”, Pacific J. Math., 28:1 (1969), 9–15 | MR | Zbl
[5] A. D. Bolbot, “Ob ekvatsionalno polnykh mnogoobraziyakh totalno simmetricheskikh kvazigrupp”, Alg. i log., 6:2 (1967), 13–19 | MR
[6] N. Burbaki, Teoriya mnozhestv, Mir, M., 1965
[7] A. Yu. Olshanskii, “O probleme konechnogo bazisa tozhdestv v gruppakh”, Izv. AN, ser. matem., 34 (1970), 378–384
[8] M. R. Vaughan-Lee, “Varieties of Lie algebras”, Quart. J. Math. Oxford Ser., 21 (1970), 297–308 | DOI | MR | Zbl
[9] A. G. Kurosh, “Multioperatornye koltsa i algebry”, UMN, 24:1 (1969), 3–15 | Zbl
[10] M. S. Burgin, “Lineinye $\Omega$-algebry nad kommutativnymi koltsami i dostizhimye mnogoobraziya”, Vestn. MGU, matem. mekh., 1972, no. 2, 56–63 | MR | Zbl
[11] A. G. Kurosh, Lektsii po obschei algebre, Fizmatgiz, M., 1962