Stabilization as $t\to\infty$ of the solution of a parabolic equation that decreases on a set of positive measure
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1976_31_3_a11,
     author = {G. G. Groza},
     title = {Stabilization as $t\to\infty$ of the solution of a~parabolic equation that decreases on a~set of positive measure},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1976},
     volume = {31},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1976_31_3_a11/}
}
TY  - JOUR
AU  - G. G. Groza
TI  - Stabilization as $t\to\infty$ of the solution of a parabolic equation that decreases on a set of positive measure
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1976
VL  - 31
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1976_31_3_a11/
LA  - ru
ID  - RM_1976_31_3_a11
ER  - 
%0 Journal Article
%A G. G. Groza
%T Stabilization as $t\to\infty$ of the solution of a parabolic equation that decreases on a set of positive measure
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1976
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1976_31_3_a11/
%G ru
%F RM_1976_31_3_a11
G. G. Groza. Stabilization as $t\to\infty$ of the solution of a parabolic equation that decreases on a set of positive measure. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 3. http://geodesic.mathdoc.fr/item/RM_1976_31_3_a11/

[1] E. M. Landis, O. A. Oleinik, “Obobschennaya analitichnost i nekotorye svyazannye s nei svoistva reshenii ellipticheskikh i parabolicheskikh uravnenii”, UMN, 29:2 (176) (1974) | MR

[2] R. Ya. Glagoleva, “Nekotorye svoistva reshenii lineinogo parabolicheskogo uravneniya vtorogo poryadka”, Matem. sb., 74 (116):1 (1968)

[3] G. E. Shilov, Matematicheskii analiz, spets. kurs, M., 1961

[4] G. N. Trytten, “Pointwise bounds for solutions of the Couchy problem for ellipequations”, Arch. Rational Mech. and Anal., 13:3 (1963), 222–224 | DOI | MR