The monadicity of categories that are dual to certain categories of locally convex spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 2 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1976_31_2_a19,
     author = {V. E. Kholodovskii},
     title = {The monadicity of categories that are dual to certain categories of locally convex spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1976},
     volume = {31},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1976_31_2_a19/}
}
TY  - JOUR
AU  - V. E. Kholodovskii
TI  - The monadicity of categories that are dual to certain categories of locally convex spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1976
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_1976_31_2_a19/
LA  - ru
ID  - RM_1976_31_2_a19
ER  - 
%0 Journal Article
%A V. E. Kholodovskii
%T The monadicity of categories that are dual to certain categories of locally convex spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1976
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/RM_1976_31_2_a19/
%G ru
%F RM_1976_31_2_a19
V. E. Kholodovskii. The monadicity of categories that are dual to certain categories of locally convex spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 2. http://geodesic.mathdoc.fr/item/RM_1976_31_2_a19/

[1] D. A. Raikov, “Eksponentsialnyi zakon dlya prostranstv nepreryvnykh lineinykh otobrazhenii”, Matem. sb., 67(109) (1965), 279–302 | MR | Zbl

[2] S. Maclane, Categories for the working mathematitions, Springer 72, Graduate texts in Math., 5, 1971–72 | MR

[3] V. Ptak, “Polnota i teorema ob otkrytom otobrazhenii”, Matematika, 4:6 (1960), 39–67

[4] A. Grotendik, “O prostranstvakh $F$ i $DF$”, Matematika, 2:3 (1958), 81–129

[5] Z. Semadeni, Monads and their Eilenberg-Moore Algebras in Functional Analysis, Queen's university, Kingston, Ontario, Canada, 1973 | MR | Zbl