The monadicity of categories that are dual to certain categories of locally convex spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 2
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1976_31_2_a19,
author = {V. E. Kholodovskii},
title = {The monadicity of categories that are dual to certain categories of locally convex spaces},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1976},
volume = {31},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1976_31_2_a19/}
}
TY - JOUR AU - V. E. Kholodovskii TI - The monadicity of categories that are dual to certain categories of locally convex spaces JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1976 VL - 31 IS - 2 UR - http://geodesic.mathdoc.fr/item/RM_1976_31_2_a19/ LA - ru ID - RM_1976_31_2_a19 ER -
V. E. Kholodovskii. The monadicity of categories that are dual to certain categories of locally convex spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 2. http://geodesic.mathdoc.fr/item/RM_1976_31_2_a19/
[1] D. A. Raikov, “Eksponentsialnyi zakon dlya prostranstv nepreryvnykh lineinykh otobrazhenii”, Matem. sb., 67(109) (1965), 279–302 | MR | Zbl
[2] S. Maclane, Categories for the working mathematitions, Springer 72, Graduate texts in Math., 5, 1971–72 | MR
[3] V. Ptak, “Polnota i teorema ob otkrytom otobrazhenii”, Matematika, 4:6 (1960), 39–67
[4] A. Grotendik, “O prostranstvakh $F$ i $DF$”, Matematika, 2:3 (1958), 81–129
[5] Z. Semadeni, Monads and their Eilenberg-Moore Algebras in Functional Analysis, Queen's university, Kingston, Ontario, Canada, 1973 | MR | Zbl