Asymptotic behavior of the spectral function of a first order differential equation with an unbounded operator coefficient
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 2 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1976_31_2_a16,
     author = {G. A. Suvorchenkova},
     title = {Asymptotic behavior of the spectral function of a~first order differential equation with an unbounded operator coefficient},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1976},
     volume = {31},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1976_31_2_a16/}
}
TY  - JOUR
AU  - G. A. Suvorchenkova
TI  - Asymptotic behavior of the spectral function of a first order differential equation with an unbounded operator coefficient
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1976
VL  - 31
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_1976_31_2_a16/
LA  - ru
ID  - RM_1976_31_2_a16
ER  - 
%0 Journal Article
%A G. A. Suvorchenkova
%T Asymptotic behavior of the spectral function of a first order differential equation with an unbounded operator coefficient
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1976
%V 31
%N 2
%U http://geodesic.mathdoc.fr/item/RM_1976_31_2_a16/
%G ru
%F RM_1976_31_2_a16
G. A. Suvorchenkova. Asymptotic behavior of the spectral function of a first order differential equation with an unbounded operator coefficient. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 31 (1976) no. 2. http://geodesic.mathdoc.fr/item/RM_1976_31_2_a16/

[1] M. L. Gorbachuk, Nekotorye voprosy spektralnoi teorii differentsialnykh uravnenii v prostranstve vektor-funktsii, Doktorskaya dissertatsiya, Kiev, 1973

[2] I. S. Sargsyan, “O reshenii zadachi Koshi dlya odnomernoi nestatsionarnoi sistemy Diraka”, DAN Arm. SSR, 27 (1966), 129–133

[3] I. S. Sargsyan, “Ob asimptoticheskom povedenii spektralnoi funktsii i o razlozhenii po sobstvennym funktsiyam odnomernoi sistemy Diraka”, Izv. AN Arm. SSR, seriya matem., 2 (1967), 155–194

[4] B. M. Levitan, I. S. Sargsyan, Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970 | MR | Zbl