An ergodic theorem for Markov operators, and the Shilov boundary
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1975_30_6_a20,
     author = {A. M. Rubinov},
     title = {An ergodic theorem for {Markov} operators, and the {Shilov} boundary},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1975},
     volume = {30},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1975_30_6_a20/}
}
TY  - JOUR
AU  - A. M. Rubinov
TI  - An ergodic theorem for Markov operators, and the Shilov boundary
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1975
VL  - 30
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1975_30_6_a20/
LA  - ru
ID  - RM_1975_30_6_a20
ER  - 
%0 Journal Article
%A A. M. Rubinov
%T An ergodic theorem for Markov operators, and the Shilov boundary
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1975
%V 30
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1975_30_6_a20/
%G ru
%F RM_1975_30_6_a20
A. M. Rubinov. An ergodic theorem for Markov operators, and the Shilov boundary. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 6. http://geodesic.mathdoc.fr/item/RM_1975_30_6_a20/

[1] S. S. Kutateladze, A. M. Rubinov, “Dvoistvennost Minkovskogo i ee prilozheniya”, UMN, 27:3 (1972), 127–176 | MR | Zbl

[2] A. M. Rubinov, “Ob odnom sublineinom funktsionale”, Optimizatsiya, 12 (1974)