@article{RM_1975_30_5_a6,
author = {P. Deligne},
title = {The {Weil} conjecture. {I}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1975},
volume = {30},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1975_30_5_a6/}
}
P. Deligne. The Weil conjecture. I. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 5. http://geodesic.mathdoc.fr/item/RM_1975_30_5_a6/
[1] Dwork, “On the rationality of the zeta function of an algebraic variety”, Amer. J. Math., 82 (1960), 631–648 | DOI | MR | Zbl
[2] A. Grothendieck, Formule de Lefschetz et rationalité des fonctions $L$, Seminare Bourbaki, 279, Benjamin, 1964
[3] Cohomologie $l$-adique et fonctions $L$, Seminaire de Géometrie Algébrique du Bois–Marie
[4] Lubkin, “A $p$-adic proof of Weil's conjectures”, Ann. of Math., 87 (1968), 105–255 | DOI | MR | Zbl
[5] M. Artin, A. Grothendieck, J. L. Verdier, Théorie de topos et cohomologie étale des schémas, Lecture Notes in Math., 269, 270, 305, Séminaire de Géometrie Algébrique du Bois–Marie | Zbl
[6] R. A. Rankin, “Contributions to the theory of Ramanujan's function $\tau(n)$ and similar arithmetical functions. II”, Proc. Cam. Phil. Soc., 35 (1939), 351–372 | DOI | MR | Zbl
[7] G. Veil, Klassicheskie gruppy, IL, M.
[8] S. Lefschetz, L'analysis situs et la géomètrie algébrique, Gauthier Villars, 1924 | Zbl
[9] A. Grothendieck, Groupes de monodromie en geometrie algebrique, v. 1, Lecture Notes in Math., 288, 1972 ; P. Deligne, N. Katz, v. 2, Lecture Notes in Math., 340 | MR
[10] Zh. P. Sepp, $l$-adicheskie predstavleniya i ellipticheskie krivye, Mir, M., 1972
[11] J. P. Serre, “Sur les corps locaux à corps résiduel algébriquement clos.”, Bull. Soc. Math. France, 89 (1961), 105–154 | MR | Zbl
[12] A. Weil, “Numbers of solutions of equations infinite felds”, Bull. Amer. Math. Soc., 55 (1949), 497–508 | DOI | MR | Zbl