Algebraic curves that can be uniformized by discrete arithmetic subgroups of $PGL_2(k_w)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1975_30_3_a22,
     author = {I. V. Cherednik},
     title = {Algebraic curves that can be uniformized by discrete arithmetic subgroups of $PGL_2(k_w)$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1975},
     volume = {30},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1975_30_3_a22/}
}
TY  - JOUR
AU  - I. V. Cherednik
TI  - Algebraic curves that can be uniformized by discrete arithmetic subgroups of $PGL_2(k_w)$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1975
VL  - 30
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1975_30_3_a22/
LA  - ru
ID  - RM_1975_30_3_a22
ER  - 
%0 Journal Article
%A I. V. Cherednik
%T Algebraic curves that can be uniformized by discrete arithmetic subgroups of $PGL_2(k_w)$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1975
%V 30
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1975_30_3_a22/
%G ru
%F RM_1975_30_3_a22
I. V. Cherednik. Algebraic curves that can be uniformized by discrete arithmetic subgroups of $PGL_2(k_w)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 3. http://geodesic.mathdoc.fr/item/RM_1975_30_3_a22/

[1] Ya. Ikhara, “O zadachakh kongruents-monodromii”, Matematika, 14:3 (1970), 40–98

[2] D. Mamford, “Analiticheskaya konstruktsiya krivykh s vyrozhdennoi reduktsiei nad polnymi lokalnymi koltsami”, UMN, 27:6(168) (1972), 181–221 | MR | Zbl

[3] G. Shimura, “On canonical models of arithmetic quotients of bounded symmetric domains”, Ann. of Math., 91 (1970), 144–222 | DOI | MR | Zbl