Conditions for the nonuniqueness of a Gibbs state for lattice models with finite interaction potential
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 3
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1975_30_3_a11,
author = {V. M. Gercik},
title = {Conditions for the nonuniqueness of {a~Gibbs} state for lattice models with finite interaction potential},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1975},
volume = {30},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1975_30_3_a11/}
}
TY - JOUR AU - V. M. Gercik TI - Conditions for the nonuniqueness of a Gibbs state for lattice models with finite interaction potential JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1975 VL - 30 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_1975_30_3_a11/ LA - ru ID - RM_1975_30_3_a11 ER -
V. M. Gercik. Conditions for the nonuniqueness of a Gibbs state for lattice models with finite interaction potential. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 3. http://geodesic.mathdoc.fr/item/RM_1975_30_3_a11/
[1] D. Ruelle, Statistical mechanics. Rigorous results, W. A. Benjamin, New York–Amsterdam, 1969 ; D. Ryuel, Statisticheskaya mekhanika, Mir, M., 1971 | MR | Zbl
[2] J. L. Lebowitz, G. Gallavotti, “Phase Transitions in binary lattice gases”, J. Math. Phys., 7 (1971), 1129–1133 | DOI
[3] B. M. Gertsik, R. L. Dobrushin, “Gibbsovskie sostoyaniya v reshetchatoi modeli s vzaimodeistviem na dva shaga”, Funkts. analiz, 8:3 (1974), 12–25 | MR | Zbl