One-dimensional boundary value problems with operators that do not lower the number of sign alternations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 1 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1975_30_1_a19,
     author = {A. Yu. Levin and G. D. Stepanov},
     title = {One-dimensional boundary value problems with operators that do not lower the number of sign alternations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1975},
     volume = {30},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1975_30_1_a19/}
}
TY  - JOUR
AU  - A. Yu. Levin
AU  - G. D. Stepanov
TI  - One-dimensional boundary value problems with operators that do not lower the number of sign alternations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1975
VL  - 30
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/RM_1975_30_1_a19/
LA  - ru
ID  - RM_1975_30_1_a19
ER  - 
%0 Journal Article
%A A. Yu. Levin
%A G. D. Stepanov
%T One-dimensional boundary value problems with operators that do not lower the number of sign alternations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1975
%V 30
%N 1
%U http://geodesic.mathdoc.fr/item/RM_1975_30_1_a19/
%G ru
%F RM_1975_30_1_a19
A. Yu. Levin; G. D. Stepanov. One-dimensional boundary value problems with operators that do not lower the number of sign alternations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 30 (1975) no. 1. http://geodesic.mathdoc.fr/item/RM_1975_30_1_a19/

[1] F. R. Gantmakher, “O nesimmetricheskikh yadrakh Kelloga”, DAN, 1:10 (1936), 3–5 | Zbl

[2] M. G. Krein, G. M. Finkelshtein, “O vpolne neotritsatelnykh funktsiyakh Grina obyknovennykh differentsialnykh operatorov”, DAN, 24:3 (1939), 220–223 | MR

[3] M. G. Krein, “O nesimmetricheskikh ostsillyatsionnykh funktsiyakh Grina obyknovennykh differentsialnykh operatorov”, DAN, 25:8 (1939), 643–646 | MR

[4] M. G. Krein, “Ostsillyatsionnye teoremy dlya obyknovennykh lineinykh differentsialnykh operatorov proizvolnogo poryadka”, DAN, 25:9 (1939), 717–720

[5] P. D. Kalafati, “O funktsiyakh Grina obyknovennykh differentsialnykh uravnenii”, DAN, 26:6 (1940), 535–539

[6] M. G. Krein, M. A. Rutman, “Lineinye operatory, ostavlyayuschie invariantnym konus v prostranstve Banakha”, UMN, 3:1 (1948), 3–95 | MR | Zbl

[7] F. R. Gantmakher, M. G. Krein, Ostsillyatsionnye matritsy i yadra i malye kolebaniya mekhanicheskikh sistem, Gostekhizdat, M.–L., 1950

[8] S. Karlin, Total positivity, vol. I, Calif. Univ. Press, Stanford, 1968 | MR | Zbl

[9] A. Yu. Levin, “Neostsillyatsiya reshenii uravneniya $x^{(n)}+p_1(t)x^{(n-1)}+\dots +p_n(t)x$=0”, UMH, 24:2 (1969), 43–96 | MR