Uniform classification of motions in Euclidean and Lobachevskian spaces
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1974_29_5_a9,
     author = {A. G. Vainshtein},
     title = {Uniform classification of motions in {Euclidean} and {Lobachevskian} spaces},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1974},
     volume = {29},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1974_29_5_a9/}
}
TY  - JOUR
AU  - A. G. Vainshtein
TI  - Uniform classification of motions in Euclidean and Lobachevskian spaces
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1974
VL  - 29
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1974_29_5_a9/
LA  - ru
ID  - RM_1974_29_5_a9
ER  - 
%0 Journal Article
%A A. G. Vainshtein
%T Uniform classification of motions in Euclidean and Lobachevskian spaces
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1974
%V 29
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1974_29_5_a9/
%G ru
%F RM_1974_29_5_a9
A. G. Vainshtein. Uniform classification of motions in Euclidean and Lobachevskian spaces. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 5. http://geodesic.mathdoc.fr/item/RM_1974_29_5_a9/

[1] A. S. Shvarts, “Topologicheskaya i infinitezimalnaya klassifikatsiya affinnykh preobrazovanii”, Uchen. Zap. IGPI, 5 (1954), 9–26

[2] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M.–L., 1947

[3] G. de Rham, “Sur les conditions d'homeomorphie de deux rotations de sphere a $n$ dimensions etc.”, Colloques Internationaux du Centre National de la Recherche scientifiques, no. 12, 1949 | Zbl

[4] R. C. Kirby, L. C. Siebenmann, “Some Theoremes on Topological Manifolds”, Manifolds (Amsterdam, 1970), Springer, N.Y.–Heidelberg etc., 1971, 1–7 | MR

[5] V. A. Efremovich, E. S. Tikhomirova, “Ekvimorfizmy giperbolicheskikh prostranstv”, Izv. AN, ser. matem., 28:5 (1964), 1139–1144

[6] D. A. De-Spiller, “Ekvimorfizmy i kvazikonformnye otobrazheniya absolyuta”, DAN, 194:5 (1970), 1066–1069 | MR