The existence of resolvent distributions of dimension $n-r-1$ for not completely integrable Pfaffian system of rank $r$ in $R^n$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 4 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1974_29_4_a20,
     author = {I. B. Tabov},
     title = {The existence of resolvent distributions of dimension $n-r-1$ for not completely integrable {Pfaffian} system of rank~$r$ in~$R^n$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1974},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1974_29_4_a20/}
}
TY  - JOUR
AU  - I. B. Tabov
TI  - The existence of resolvent distributions of dimension $n-r-1$ for not completely integrable Pfaffian system of rank $r$ in $R^n$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1974
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_1974_29_4_a20/
LA  - ru
ID  - RM_1974_29_4_a20
ER  - 
%0 Journal Article
%A I. B. Tabov
%T The existence of resolvent distributions of dimension $n-r-1$ for not completely integrable Pfaffian system of rank $r$ in $R^n$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1974
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/RM_1974_29_4_a20/
%G ru
%F RM_1974_29_4_a20
I. B. Tabov. The existence of resolvent distributions of dimension $n-r-1$ for not completely integrable Pfaffian system of rank $r$ in $R^n$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 4. http://geodesic.mathdoc.fr/item/RM_1974_29_4_a20/

[1] E. Goursat, Leçons sur le problème de Pfaff, Hermann, Paris, 1922 | Zbl

[2] R. Bishop, R. Krittenden, Geometriya mnogoobrazii, «Mir», M., 1967 | MR | Zbl

[3] P. K. Rashevskii, Geometricheskaya teoriya differentsialnykh uravnenii s chastnymi proizvodnymi, Gostekhizdat, M.–L., 1947