A generalized Itô formula for an extended stochastic integral with respect to Poisson random measure
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 4
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1974_29_4_a11,
author = {Yu. M. Kabanov},
title = {A~generalized {It\^o} formula for an extended stochastic integral with respect to {Poisson} random measure},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1974},
volume = {29},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1974_29_4_a11/}
}
TY - JOUR AU - Yu. M. Kabanov TI - A generalized Itô formula for an extended stochastic integral with respect to Poisson random measure JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1974 VL - 29 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_1974_29_4_a11/ LA - ru ID - RM_1974_29_4_a11 ER -
Yu. M. Kabanov. A generalized Itô formula for an extended stochastic integral with respect to Poisson random measure. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 4. http://geodesic.mathdoc.fr/item/RM_1974_29_4_a11/
[1] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, KGU, Kiev, 1961
[2] M. Hitsuda, “Formula for Brownian Partial Derivatives”, Second Japan - USSR Symposium on Probability Theory, v. 2 (Kyoto, August, 1972), 111–114
[3] Yu. M. Kabanov, “Predstavlenie funktsionalov ot vinerovskogo i puassonovskogo protsessov v vide stokhasticheskikh integralov”, Teor. veroyatn. i ee primeneniya, 18:2 (1973), 376–380 | MR | Zbl