A generalized Itô formula for an extended stochastic integral with respect to Poisson random measure
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 4 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1974_29_4_a11,
     author = {Yu. M. Kabanov},
     title = {A~generalized {It\^o} formula for an extended stochastic integral with respect to {Poisson} random measure},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1974},
     volume = {29},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1974_29_4_a11/}
}
TY  - JOUR
AU  - Yu. M. Kabanov
TI  - A generalized Itô formula for an extended stochastic integral with respect to Poisson random measure
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1974
VL  - 29
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RM_1974_29_4_a11/
LA  - ru
ID  - RM_1974_29_4_a11
ER  - 
%0 Journal Article
%A Yu. M. Kabanov
%T A generalized Itô formula for an extended stochastic integral with respect to Poisson random measure
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1974
%V 29
%N 4
%U http://geodesic.mathdoc.fr/item/RM_1974_29_4_a11/
%G ru
%F RM_1974_29_4_a11
Yu. M. Kabanov. A generalized Itô formula for an extended stochastic integral with respect to Poisson random measure. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 4. http://geodesic.mathdoc.fr/item/RM_1974_29_4_a11/

[1] A. V. Skorokhod, Issledovaniya po teorii sluchainykh protsessov, KGU, Kiev, 1961

[2] M. Hitsuda, “Formula for Brownian Partial Derivatives”, Second Japan - USSR Symposium on Probability Theory, v. 2 (Kyoto, August, 1972), 111–114

[3] Yu. M. Kabanov, “Predstavlenie funktsionalov ot vinerovskogo i puassonovskogo protsessov v vide stokhasticheskikh integralov”, Teor. veroyatn. i ee primeneniya, 18:2 (1973), 376–380 | MR | Zbl