Rings over which every module is endoprojective
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1974_29_3_a8,
     author = {I. V. Bobylev},
     title = {Rings over which every module is endoprojective},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1974},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1974_29_3_a8/}
}
TY  - JOUR
AU  - I. V. Bobylev
TI  - Rings over which every module is endoprojective
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1974
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1974_29_3_a8/
LA  - ru
ID  - RM_1974_29_3_a8
ER  - 
%0 Journal Article
%A I. V. Bobylev
%T Rings over which every module is endoprojective
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1974
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1974_29_3_a8/
%G ru
%F RM_1974_29_3_a8
I. V. Bobylev. Rings over which every module is endoprojective. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3. http://geodesic.mathdoc.fr/item/RM_1974_29_3_a8/

[1] A. J. Douglas, H. K. Farahat, “The homological dimension of an Abelian groups as a module over its ring of endomorphisms”, Monatsh. für Math., 69 (1965), 294–305 | DOI | MR | Zbl

[2] F. Richman, E. A. Walker, “Primary abelian groups as modules over their endomorphism ring”, Math. Z., 89 (1965), 77–81 | DOI | MR | Zbl

[3] I. V. Bobylev, “Proektivnaya razmernost abelevoi gruppy nad koltsom svoikh endomorfizmov”, UMN, 28:2 (1973), 229–230 | MR | Zbl