The lattice of ideals of local rings of finite-to-one mappings of spaces of the same dimension is self-dual
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1974_29_3_a37,
     author = {A. N. Shoshitaishvili},
     title = {The lattice of ideals of local rings of finite-to-one mappings of spaces of the same dimension is self-dual},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1974},
     volume = {29},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1974_29_3_a37/}
}
TY  - JOUR
AU  - A. N. Shoshitaishvili
TI  - The lattice of ideals of local rings of finite-to-one mappings of spaces of the same dimension is self-dual
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1974
VL  - 29
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1974_29_3_a37/
LA  - ru
ID  - RM_1974_29_3_a37
ER  - 
%0 Journal Article
%A A. N. Shoshitaishvili
%T The lattice of ideals of local rings of finite-to-one mappings of spaces of the same dimension is self-dual
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1974
%V 29
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1974_29_3_a37/
%G ru
%F RM_1974_29_3_a37
A. N. Shoshitaishvili. The lattice of ideals of local rings of finite-to-one mappings of spaces of the same dimension is self-dual. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3. http://geodesic.mathdoc.fr/item/RM_1974_29_3_a37/

[1] V. I. Arnold, “Osobennosti gladkikh otobrazhenii”, UMN, 23:1 (139) (1968), 3–44

[2] G. Birkgof, Teoriya struktur, IL, M., 1952

[3] Ch. Kertis, I. Rainer, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, «Nauka», M., 1969 | MR

[4] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, «Mir», M., 1972 | MR

[5] N. Dzhekobson, Stroenie kolets, IL, M., 1961

[6] I. Lambek, Koltsa i moduli, «Mir», M., 1971 | MR | Zbl

[7] K. Saito, Einfach Elliptische Singularitäten, Göttingen, 1973 | MR