The lattice of ideals of local rings of finite-to-one mappings of spaces of the same dimension is self-dual
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1974_29_3_a37,
author = {A. N. Shoshitaishvili},
title = {The lattice of ideals of local rings of finite-to-one mappings of spaces of the same dimension is self-dual},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1974},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1974_29_3_a37/}
}
TY - JOUR AU - A. N. Shoshitaishvili TI - The lattice of ideals of local rings of finite-to-one mappings of spaces of the same dimension is self-dual JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1974 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_1974_29_3_a37/ LA - ru ID - RM_1974_29_3_a37 ER -
%0 Journal Article %A A. N. Shoshitaishvili %T The lattice of ideals of local rings of finite-to-one mappings of spaces of the same dimension is self-dual %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1974 %V 29 %N 3 %U http://geodesic.mathdoc.fr/item/RM_1974_29_3_a37/ %G ru %F RM_1974_29_3_a37
A. N. Shoshitaishvili. The lattice of ideals of local rings of finite-to-one mappings of spaces of the same dimension is self-dual. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3. http://geodesic.mathdoc.fr/item/RM_1974_29_3_a37/
[1] V. I. Arnold, “Osobennosti gladkikh otobrazhenii”, UMN, 23:1 (139) (1968), 3–44
[2] G. Birkgof, Teoriya struktur, IL, M., 1952
[3] Ch. Kertis, I. Rainer, Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, «Nauka», M., 1969 | MR
[4] M. Atya, I. Makdonald, Vvedenie v kommutativnuyu algebru, «Mir», M., 1972 | MR
[5] N. Dzhekobson, Stroenie kolets, IL, M., 1961
[6] I. Lambek, Koltsa i moduli, «Mir», M., 1971 | MR | Zbl
[7] K. Saito, Einfach Elliptische Singularitäten, Göttingen, 1973 | MR