The smooth theory of the canonical Maslov operator on a complex Lagrangian germ
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1974_29_3_a32,
author = {B. Yu. Sternin and V. E. Shatalov},
title = {The smooth theory of the canonical {Maslov} operator on a~complex {Lagrangian} germ},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1974},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1974_29_3_a32/}
}
TY - JOUR AU - B. Yu. Sternin AU - V. E. Shatalov TI - The smooth theory of the canonical Maslov operator on a complex Lagrangian germ JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1974 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_1974_29_3_a32/ LA - ru ID - RM_1974_29_3_a32 ER -
B. Yu. Sternin; V. E. Shatalov. The smooth theory of the canonical Maslov operator on a complex Lagrangian germ. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3. http://geodesic.mathdoc.fr/item/RM_1974_29_3_a32/
[1] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo MGU, 1965
[2] V. P. Maslov, “Kanonicheskii operator na lagranzhevom mnogoobrazii s kompleksnym rostkom i regulyarizator dlya psevdodifferentsialnykh operatorov i raznostnykh skhem”, DAN, 195:3 (1970)
[3] V. P. Maslov, “O regulyarizatsii zadachi Koshi dlya psevdodifferentsialnykh operatorov”, DAN, 177:6 (1967) | Zbl
[4] V. V. Kucherenko, “Kanonicheskii operator Maslova na rostke kompleksnogo pochti analiticheskogo mnogoobraziya”, DAN, 213:6 (1973) | Zbl
[5] B. Yu. Sternin, “Kanonicheskii operator Maslova v kompleksnoi situatsii”, UMN, 29:1 (1974), 187–188 | MR | Zbl