Nonabelian cohomology and finiteness theorems for integer orbits of semisimple group schemes
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{RM_1974_29_3_a27,
author = {E. A. Nisnevich},
title = {Nonabelian cohomology and finiteness theorems for integer orbits of semisimple group schemes},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1974},
volume = {29},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1974_29_3_a27/}
}
TY - JOUR AU - E. A. Nisnevich TI - Nonabelian cohomology and finiteness theorems for integer orbits of semisimple group schemes JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1974 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/RM_1974_29_3_a27/ LA - ru ID - RM_1974_29_3_a27 ER -
E. A. Nisnevich. Nonabelian cohomology and finiteness theorems for integer orbits of semisimple group schemes. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 29 (1974) no. 3. http://geodesic.mathdoc.fr/item/RM_1974_29_3_a27/
[1] M. Artin, “Algebraicheskaya approksimatsiya struktur nad polnymi lokalnymi koltsami”, Matem., 14:3 (1970), 3–39 | MR | Zbl
[2] A. Borel, Kharish-Chandra, “Arifmeticheskie podgruppy algebraicheskikh grupp Li”, Matem., 8:2 (1964), 19–71 | MR
[3] M. Demazur, A. Grothendieck, Schemas en groupes, Seminaire de Geometrie algebrique du Bois-Marie 1962/64, Lect. Notes in Math., 151–153, Springer-Verlag, Berlin, 1971
[4] M. Greenberg, “Schemata over local rings, II”, Ann. of Math., 78:2 (1963), 624–648 | DOI | MR
[5] R. W. Richardson, “Conjugacy classes in Lie algebras and algebraic groups”, Ann. of Math., 81:1 (1967), 1–15 | DOI | MR
[6] Zh. P. Serr, Kogomologii Galua, «Mir», M., 1968 | MR