On coloring the graph of a triangulation of the $n$-sphere
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1973_28_6_a9,
     author = {\'E. G. Belaga},
     title = {On coloring the graph of a triangulation of the $n$-sphere},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1973},
     volume = {28},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_6_a9/}
}
TY  - JOUR
AU  - É. G. Belaga
TI  - On coloring the graph of a triangulation of the $n$-sphere
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
VL  - 28
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_6_a9/
LA  - ru
ID  - RM_1973_28_6_a9
ER  - 
%0 Journal Article
%A É. G. Belaga
%T On coloring the graph of a triangulation of the $n$-sphere
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%V 28
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1973_28_6_a9/
%G ru
%F RM_1973_28_6_a9
É. G. Belaga. On coloring the graph of a triangulation of the $n$-sphere. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 6. http://geodesic.mathdoc.fr/item/RM_1973_28_6_a9/

[1] E. G. Belaga, “Ob odnoi interpretatsii 4-raskraski ploskogo grafa”, UMN, 27:3 (1972), 191 | MR | Zbl

[2] P. I. Heewood, “Map colour theorem”, Quart. J. Math., Oxford, Ser. 2, 24 (1890), 332–338

[3] D. Geil, “Sosednie vershiny na vypuklom mnogogrannike”, Lineinye neravenstva i smezhnye voprosy, eds. G. U. Kun, A. U. Takker, IL, M., 1959

[4] P. McMullen, G. C. Shephard, Convex politopes and the upper bound conjecture, Cambridge University Press, Cambridge, 1971 | MR | Zbl