@article{RM_1973_28_6_a16,
author = {I. Ya. Dorfman},
title = {Sheaf-theoretic methods in the theory of the {L\'evy} {Laplacian}},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1973},
volume = {28},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1973_28_6_a16/}
}
I. Ya. Dorfman. Sheaf-theoretic methods in the theory of the Lévy Laplacian. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 6. http://geodesic.mathdoc.fr/item/RM_1973_28_6_a16/
[1] P. Levi, Konkretnye problemy funktsionalnogo analiza, «Nauka», M., 1967 | MR
[2] G. E. Shilov, “O nekotorykh voprosakh analiza v gilbertovom prostranstve, I”, Funkts. analiz, 1:2 (1967), 81–90 | MR | Zbl
[3] G. E. Shilov, “O nekotorykh voprosakh analiza v gilbertovom prostranstve, II”, Matem. issledovaniya (izd. Mold. AN), 2:4 (1967), 166–186 | MR
[4] A. S. Nemirovskii, G. E. Shilov, “Ob aksiomaticheskom opisanii operatora Laplasa na gilbertovom prostranstve”, Funkts. analiz, 3:3 (1969), 79–85 | MR | Zbl
[5] I. Ya. Dorfman, “O srednikh i laplasiane funktsii na gilbertovom prostranstve”, Matem. sb., 81:2 (1970), 192–208 | MR | Zbl
[6] E. M. Polischuk, Kontinualnye srednie i voprosy analiza v funktsionalnykh prostranstvakh, Dokt. diss., MGU, M., 1970
[7] V. Ya. Sikiryavyi, “Invariantnyi operator Laplasa kak operator psevdosfericheskogo differentsirovaniya”, Vestn. MGU, 3 (1972), 66–73 | Zbl
[8] I. Ya. Dorfman, “Ob odnom klasse vektornoziachnykh obobschennykh funktsii i ego prilozheniyakh k teorii laplasiana Levi”, Vestn. MGU, 5 (1973), 18–25 | MR | Zbl