A certain class of differential operators that admit a two-sided energy estimate
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1973_28_6_a14,
     author = {S. G. Gindikin},
     title = {A certain class of differential operators that admit a two-sided energy estimate},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1973},
     volume = {28},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_6_a14/}
}
TY  - JOUR
AU  - S. G. Gindikin
TI  - A certain class of differential operators that admit a two-sided energy estimate
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
VL  - 28
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_6_a14/
LA  - ru
ID  - RM_1973_28_6_a14
ER  - 
%0 Journal Article
%A S. G. Gindikin
%T A certain class of differential operators that admit a two-sided energy estimate
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%V 28
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1973_28_6_a14/
%G ru
%F RM_1973_28_6_a14
S. G. Gindikin. A certain class of differential operators that admit a two-sided energy estimate. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 6. http://geodesic.mathdoc.fr/item/RM_1973_28_6_a14/

[1] V. P. Mikhailov, “O povedenii na beskonechnosti odnogo klassa mnogochlenov”, Trudy Matem. in-ta im. V. A. Steklova, 91, 1967, 59–80 | MR

[2] L. R. Volevich, Integraly energii differentsialnykh operatorov, korrektnykh po I. G. Petrovskomu, preprint No 3, IPM AN SSSR, 1970

[3] L. R. Volevich, S. G. Gindikin, “Zadacha Koshi dlya differentsialnykh operatorov s dominiruyuschei glavnoi chastyu”, Funkts. analiz, 2:3 (1968), 22–38 | MR | Zbl