The central limit theorem for a “noncommutative” stationary random process
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1973_28_5_a9,
     author = {V. V. Anshelevich},
     title = {The central limit theorem for a {\textquotedblleft}noncommutative{\textquotedblright} stationary random process},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1973},
     volume = {28},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_5_a9/}
}
TY  - JOUR
AU  - V. V. Anshelevich
TI  - The central limit theorem for a “noncommutative” stationary random process
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
VL  - 28
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_5_a9/
LA  - ru
ID  - RM_1973_28_5_a9
ER  - 
%0 Journal Article
%A V. V. Anshelevich
%T The central limit theorem for a “noncommutative” stationary random process
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%V 28
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1973_28_5_a9/
%G ru
%F RM_1973_28_5_a9
V. V. Anshelevich. The central limit theorem for a “noncommutative” stationary random process. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 5. http://geodesic.mathdoc.fr/item/RM_1973_28_5_a9/

[1] V. V. Anshelevich, “Tsentralnaya predelnaya teorema v «nekommutativnoi» teorii veroyatnostei”, DAN, 208:6 (1973) | Zbl

[2] D. Ryuel, Statisticheskaya mekhanika, «Mir», M., 1971

[3] R. Haag, N. M. Hugenholtz, M. Winnink, “On the equilibrium states on quantum statistical mechanics”, Comm. Math. Phys., 5 (1967), 215–236 | DOI | MR | Zbl

[4] O. E. Lanford, “Quantum spin sistems”, Cargese Lectures in Physics, 4, New-York–London–Paris

[5] W. Greenberg, “Correlation functionals of infinite volume quantum spin systems”, Comm. Math. Phys., 11 (1969), 314–320 | DOI | MR