@article{RM_1973_28_4_a9,
author = {S. Kh. Aranson and V. Z. Grines},
title = {The topological equivalence of minimal sets of dynamical systems on two-dimensional manifolds},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1973},
volume = {28},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1973_28_4_a9/}
}
TY - JOUR AU - S. Kh. Aranson AU - V. Z. Grines TI - The topological equivalence of minimal sets of dynamical systems on two-dimensional manifolds JO - Trudy Matematicheskogo Instituta imeni V.A. Steklova PY - 1973 VL - 28 IS - 4 UR - http://geodesic.mathdoc.fr/item/RM_1973_28_4_a9/ LA - ru ID - RM_1973_28_4_a9 ER -
%0 Journal Article %A S. Kh. Aranson %A V. Z. Grines %T The topological equivalence of minimal sets of dynamical systems on two-dimensional manifolds %J Trudy Matematicheskogo Instituta imeni V.A. Steklova %D 1973 %V 28 %N 4 %U http://geodesic.mathdoc.fr/item/RM_1973_28_4_a9/ %G ru %F RM_1973_28_4_a9
S. Kh. Aranson; V. Z. Grines. The topological equivalence of minimal sets of dynamical systems on two-dimensional manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 4. http://geodesic.mathdoc.fr/item/RM_1973_28_4_a9/
[1] A. Puankare, O krivykh, opredelyaemykh differentsialnymi uravneniyami, Gostekhizdat, M.–L., 1947
[2] A. Denjoy, “Sur les courbes définies par les equations differentielles á la surface du tore”, J. Math. Pures Appl., 11(9) (1932), 333–375 | Zbl
[3] S. V. Fomin, “O dinamicheskikh sistemakh s chisto tochechnym spektrom”, DAN, 77:1 (1951), 29–32 | Zbl
[4] N. Markley, “Homeomorphisms of the circle without periodic points”, Lond. Math. Soc., 20 (3) (1970), 688–698 | DOI | MR | Zbl
[5] A. Schwartz, “A generalization of a Poincare-Bendixson theorem to closed two-dimensional manifolds”, Amer. J. Math., 85 (1963), 453–458 | DOI | MR | Zbl
[6] S. Kh. Aranson, V. Z. Grines, “O nekotorykh invariantakh dinamicheskikh sistem na dvumernykh mnogoobraziyakh (neobkhodimye i dostatochnye usloviya topologicheskoi ekvivalentnosti tranzitivnykh sistem)”, Matem. sb., 90 (132):3 (1973), 372–402 | MR