The construction and properties of certain classes of strongly regular graphs
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1973_28_3_a22,
     author = {M. Z. Rozenfel'd},
     title = {The construction and properties of certain classes of strongly regular graphs},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1973},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_3_a22/}
}
TY  - JOUR
AU  - M. Z. Rozenfel'd
TI  - The construction and properties of certain classes of strongly regular graphs
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_3_a22/
LA  - ru
ID  - RM_1973_28_3_a22
ER  - 
%0 Journal Article
%A M. Z. Rozenfel'd
%T The construction and properties of certain classes of strongly regular graphs
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1973_28_3_a22/
%G ru
%F RM_1973_28_3_a22
M. Z. Rozenfel'd. The construction and properties of certain classes of strongly regular graphs. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3. http://geodesic.mathdoc.fr/item/RM_1973_28_3_a22/

[1] A. K. Kelmans, “Grafy s odinakovym chislom putei dliny 2 mezhdu smezhnymi i nesmezhnymi parami vershin”, Voprosy kibernetiki, Trudy seminara po kombinatornoi matematike (MGU, yanvar 1967), «Sovetskoe radio», M., 1972

[2] R. C. Bose, “Strongly regular graphs, partial geometries and partially balanced designs”, Pacific J. Math., 13 (1963), 389–419 | MR | Zbl

[3] Chang Li-chien, “Association schemes of partially balanced designs with parameters $v=28$, $n_1=12$, $n_2=15$ and $p_{11}^2=4$”, Sci. Record, New Ser., 4 (1960), 12–18 | Zbl

[4] S. S. Shrikhande, N. Bhat Vasanti, “Nonisomorphic solutions of pseudo-$(3, 5, 2)$ and pseudo-$(3, 6, 3)$ graphs”, Ann. N.Y. Acad. Sci., 175:1 (1970), 331–350 | MR | Zbl

[5] S. S. Shrikhande, N. Bhat Vasanti, “Graphs derived from $L_3(5)$ graphs”, Sankhya, Series A, 33 (1971), 315–350 | MR | Zbl