A maximal “constructive” extension of a field of $CM$-type
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1973_28_3_a18,
     author = {A. I. Ovseevich},
     title = {A maximal {\textquotedblleft}constructive{\textquotedblright} extension of a~field of $CM$-type},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1973},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_3_a18/}
}
TY  - JOUR
AU  - A. I. Ovseevich
TI  - A maximal “constructive” extension of a field of $CM$-type
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_3_a18/
LA  - ru
ID  - RM_1973_28_3_a18
ER  - 
%0 Journal Article
%A A. I. Ovseevich
%T A maximal “constructive” extension of a field of $CM$-type
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1973_28_3_a18/
%G ru
%F RM_1973_28_3_a18
A. I. Ovseevich. A maximal “constructive” extension of a field of $CM$-type. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3. http://geodesic.mathdoc.fr/item/RM_1973_28_3_a18/

[1] Gt. Shimura, Y. Tanijama, “Complex multiplication of abelian varieties and it's applications in number theory”, Publ. Math. Soc. Japan, 1961

[2] G. Shimura, “On class-fields, obtained by complex multiplication of abelian variety”, Osaka Math. J., 14:1 (1962) | MR | Zbl

[3] D. Mamford, Abelevy mnogoobraziya, «Mir», M., 1971

[4] Dzh. Teit, “Klassy izogenii abelevykh mnogoobrazii nad konechnym polem”, Matematika, 14:6 (1970)

[5] Dzh. Kassels, A. Frelikh, Algebraicheskaya teoriya chisel, «Mir», M., 1969