The functors $K_n(R\pi)$ as Frobenius modules over the functor $G_0^R(R\pi)$
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1973_28_3_a17,
     author = {A. I. Nemytov},
     title = {The functors $K_n(R\pi)$ as {Frobenius} modules over the functor $G_0^R(R\pi)$},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1973},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_3_a17/}
}
TY  - JOUR
AU  - A. I. Nemytov
TI  - The functors $K_n(R\pi)$ as Frobenius modules over the functor $G_0^R(R\pi)$
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_3_a17/
LA  - ru
ID  - RM_1973_28_3_a17
ER  - 
%0 Journal Article
%A A. I. Nemytov
%T The functors $K_n(R\pi)$ as Frobenius modules over the functor $G_0^R(R\pi)$
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1973_28_3_a17/
%G ru
%F RM_1973_28_3_a17
A. I. Nemytov. The functors $K_n(R\pi)$ as Frobenius modules over the functor $G_0^R(R\pi)$. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3. http://geodesic.mathdoc.fr/item/RM_1973_28_3_a17/

[1] S. M. Gersten, “On the functor $K_2$, I”, J. of Algebra, 17 (1971), 212–237 | DOI | MR | Zbl

[2] T.-Y. Lam, “Induction theorems for Grothendieck groups and Whitehead groups of finite groups”, Ann. Sci. Ecole Norm. Sup. 4${}^\mathrm{e}$ serie, 1 (1968), 91–148 | MR | Zbl

[3] R. G. Swan, $K$-theory of finite groups and orders, Lecture Notes in Math., 149, 1970 | MR | Zbl

[4] R. G. Swan, “Some relations between higher $K$-functors”, J. of Algebra, 21 (1972), 113–136 | DOI | MR | Zbl