The germs of differentiable mappings whose topological type is determined by a finite jet
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1973_28_3_a11,
     author = {A. N. Varchenko},
     title = {The germs of differentiable mappings whose topological type is determined by a~finite jet},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1973},
     volume = {28},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_3_a11/}
}
TY  - JOUR
AU  - A. N. Varchenko
TI  - The germs of differentiable mappings whose topological type is determined by a finite jet
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
VL  - 28
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_3_a11/
LA  - ru
ID  - RM_1973_28_3_a11
ER  - 
%0 Journal Article
%A A. N. Varchenko
%T The germs of differentiable mappings whose topological type is determined by a finite jet
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%V 28
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1973_28_3_a11/
%G ru
%F RM_1973_28_3_a11
A. N. Varchenko. The germs of differentiable mappings whose topological type is determined by a finite jet. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 3. http://geodesic.mathdoc.fr/item/RM_1973_28_3_a11/

[1] R. Thom, “Local topological properties of differentiable mappings”, Differential Analis, Bombay, 1964, 191–202 ; Osobennosti differentsiruemykh otobrazhenii, «Mir», M., 1968, 164–182 | MR | Zbl | MR

[2] R. Tom, “Bifurkatsionnoe podmnozhestvo prostranstva otobrazhenii”, UMN, 27:5 (1972), 51–57 | MR | Zbl

[3] A. N. Varchenko, “O rostkakh analiticheskikh otobrazhenii, topologicheskii tip kotorykh opredelyaetsya konechnoi struei”, Funkts. analiz, 6:3 (1972), 63–64 | MR | Zbl

[4] A. N. Varchenko, “Teoremy o topologicheskoi ekvisingulyarnosti semeistv algebraicheskikh mnogoobrazii i semeistv polinominalnykh otobrazhenii”, Izv. AN, ser. matem., 36:5 (1972), 957–1019 | MR | Zbl