@article{RM_1973_28_2_a8,
author = {J.-P. Serre},
title = {Congruences and modular forms},
journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
year = {1973},
volume = {28},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/RM_1973_28_2_a8/}
}
J.-P. Serre. Congruences and modular forms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 2. http://geodesic.mathdoc.fr/item/RM_1973_28_2_a8/
[1] A. O. L. Atkin, “Congruences for modular forms”, Computers in math. research, eds. R. F. Churchhouse, J.-C. Herz, North Holland, Amsterdam, 1968, 8–19 | MR
[2] Z. I. Borevich, I. R. Shafarevich, Teoriya chisel, «Nauka», M., 1964 | MR
[3] P. Deligne, “Formes modulaires et representatinos $l$-adiques”, Séminaire Bourbaki, expose 355 (février 1969), Lecture notes, 179, Springer-Verlag, 1971, gotovitsya russkii perevod
[4] M. Deuring, “Die Typen der Multiplikatorenringe elliptischer Funktionenkörper”, Abh. Math. Sem. Hamburg, 14 (1941), 197–272 | DOI | MR
[5] E. Hecke, Mathematische Werke, Vandenhoeck und Ruprecht, Göttingen, 1959 | MR | Zbl
[6] J. Igusa, “Class number of a definite quaternion with prime discriminant”, Proc. Nat. Acad. Sci. USA, 44 (1958), 312–314 | DOI | MR | Zbl
[7] J. Igusa, “On the algebraic theory of elliptic modular functions”, J. Math. Soc. Japan, 20 (1968), 96–106 | MR | Zbl
[8] H. Klingen, “Über die Werte der Dedekindschen Zetafunktionen”, Math. Ann., 145 (1962), 265–272 | DOI | MR | Zbl
[9] O. Kolberg, “Note on Ramanujan's function $\tau$”, Math. Scand., 10 (1962), 171–172 | MR | Zbl
[10] O. Kolberg, “Congruences for the coefficients of the modular invariant $j$”, Math. Scand., 10 (1962), 173–181 | MR | Zbl
[11] J. Lehner, “Lectures on modular forms”, Nat. Burean of Standards, Appl. Math. Ser., 61, Washington, 1969 | MR | Zbl
[12] S. Ramanujan, “On certain arithmetical functions”, Trans. Cambridge Phil. Soc., 22 (1916), 159–184; Collected papers, no. 18, 136–162
[13] P. Roquette, Analytic theory of elliptic functions over local fields, Vandenhoeck und Ruprecht, Göttingen, 1970 | MR | Zbl
[14] J. P. Serre, Abelian $l$-adic representations and elliptic curves, Benjamin, New York, 1968, gotovitsya russkii perevod | MR | Zbl
[15] J. P. Serre, “Une interpretation des congruences relatives à la fonction $\tau$ de Ramanujan”, Séminaire Delange-Pisot-Poitou, exposé/4, 1967/68; Matematika. Sb. perevodov
[16] J. P. Serre, “Propriétés galoisiennes des points d'ordre fini des courbes elliptiques”, Invent. Math., 15 (1972), 259–331 | DOI | MR | Zbl
[17] C. L. Siegel, “Berechnung von Zetafunktionen an ganzzahligen Stellen”, Gött. Nachr., 1969, no. 10, 87–102 | MR | Zbl
[18] H. P. F. Swinnerton-Dyer, Some implications of Ramanujan's methods of proving congruences for $\tau(n)$, 1971 | MR