Projective dimension of an abelian group over its ring of endomorphisms
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 2 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1973_28_2_a13,
     author = {I. V. Bobylev},
     title = {Projective dimension of an abelian group over its ring of endomorphisms},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1973},
     volume = {28},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1973_28_2_a13/}
}
TY  - JOUR
AU  - I. V. Bobylev
TI  - Projective dimension of an abelian group over its ring of endomorphisms
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1973
VL  - 28
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RM_1973_28_2_a13/
LA  - ru
ID  - RM_1973_28_2_a13
ER  - 
%0 Journal Article
%A I. V. Bobylev
%T Projective dimension of an abelian group over its ring of endomorphisms
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1973
%V 28
%N 2
%U http://geodesic.mathdoc.fr/item/RM_1973_28_2_a13/
%G ru
%F RM_1973_28_2_a13
I. V. Bobylev. Projective dimension of an abelian group over its ring of endomorphisms. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 28 (1973) no. 2. http://geodesic.mathdoc.fr/item/RM_1973_28_2_a13/

[1] A. J. Douglas, H. K. Farahat, “The homological dimension of an Abelian group as a module over its ring of endomorphisms”, Monatsh. für Math., 69 (1965), 294–305 | DOI | MR | Zbl

[2] A. L. S. Corner, “Every countable reduced torsion-free ring is an endomorphism ring”, Proc. London Math. Soc., 13 (1963), 687–710 | DOI | MR | Zbl

[3] M. N. Arshinov, “O proektivnoi razmernosti abelevykh grupp bez krucheniya nad koltsom svoikh endomorfizmov”, Matem. zametki, 7 (1970), 117–124 | Zbl

[4] A. J. Douglas, H. K. Farahat, “The homological dimension of an Abelian group as a module over its ring of endomorphisms”, Monatsh. für Math., 76 (1972), 109–111 | DOI | MR | Zbl