Factorization of operator-valued functions that are Hölder continuous
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 6 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1972_27_6_a22,
     author = {A. G. Sergeev},
     title = {Factorization of operator-valued functions that are {H\"older} continuous},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1972},
     volume = {27},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1972_27_6_a22/}
}
TY  - JOUR
AU  - A. G. Sergeev
TI  - Factorization of operator-valued functions that are Hölder continuous
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1972
VL  - 27
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/RM_1972_27_6_a22/
LA  - ru
ID  - RM_1972_27_6_a22
ER  - 
%0 Journal Article
%A A. G. Sergeev
%T Factorization of operator-valued functions that are Hölder continuous
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1972
%V 27
%N 6
%U http://geodesic.mathdoc.fr/item/RM_1972_27_6_a22/
%G ru
%F RM_1972_27_6_a22
A. G. Sergeev. Factorization of operator-valued functions that are Hölder continuous. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 6. http://geodesic.mathdoc.fr/item/RM_1972_27_6_a22/

[1] M. A. Shubin, “O lokalnom printsipe v zadache faktorizatsii”, Matem. issledovaniya, 6, no. 1, Kishinev, 1971, 174–180 | Zbl

[2] I. Ts. Gokhberg, “Zadacha faktorizatsii operator-funktsii”, Izv. AN, ser. matem., 28:5 (1964), 1055–1082 | Zbl