Systems of differential equations that have nonanalytic solutions
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1972_27_5_a21,
     author = {O. A. Oleinik and E. V. Radkevich},
     title = {Systems of differential equations that have nonanalytic solutions},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1972},
     volume = {27},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1972_27_5_a21/}
}
TY  - JOUR
AU  - O. A. Oleinik
AU  - E. V. Radkevich
TI  - Systems of differential equations that have nonanalytic solutions
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1972
VL  - 27
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1972_27_5_a21/
LA  - ru
ID  - RM_1972_27_5_a21
ER  - 
%0 Journal Article
%A O. A. Oleinik
%A E. V. Radkevich
%T Systems of differential equations that have nonanalytic solutions
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1972
%V 27
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1972_27_5_a21/
%G ru
%F RM_1972_27_5_a21
O. A. Oleinik; E. V. Radkevich. Systems of differential equations that have nonanalytic solutions. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 5. http://geodesic.mathdoc.fr/item/RM_1972_27_5_a21/

[1] I. G. Petrovskii, “Sur l'analyticité des solutions des systèmes d'equations différentielles”, Matem. sb., 5:1 (1939), 3–70

[2] S. Mizochata, “Solutions nulles et solutions non analytique”, J. Math. Kyoto Univ., 1 (1962), 271–302 | MR

[3] F. Treves, “Analytic hypoelliptic partial differential equations of principal type”, Comm. Pure Appl. Math., 24 (1971) | MR

[4] V. V. Grushin, “Ob odnom klasse ellipticheskikh psevdodifferentsialnykh operatorov, vyrozhdayuschikhsya na podmnogoobrazii”, Matem. sb., 84:2 (1971), 163–195 | Zbl

[5] O. A. Oleinik, E. V. Radkevich, “Ob analitichnosti reshenii lineinykh differentsialnykh uravnenii i sistem”, DAN, 202:3 (1972) | Zbl

[6] M. S. Baouendi, C. Goulaouic, “Etude de l'analyticité et de la régularité Gevrey pour une classe d'opérateurs elliptiques dégénéres”, Ann. Sci. Ec. Norm. Sup., 4:1 (1971) | MR