Schreier varieties of linear $\Omega$-algebras
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1972_27_5_a11,
     author = {M. S. Burgin},
     title = {Schreier varieties of linear $\Omega$-algebras},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1972},
     volume = {27},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1972_27_5_a11/}
}
TY  - JOUR
AU  - M. S. Burgin
TI  - Schreier varieties of linear $\Omega$-algebras
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1972
VL  - 27
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1972_27_5_a11/
LA  - ru
ID  - RM_1972_27_5_a11
ER  - 
%0 Journal Article
%A M. S. Burgin
%T Schreier varieties of linear $\Omega$-algebras
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1972
%V 27
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1972_27_5_a11/
%G ru
%F RM_1972_27_5_a11
M. S. Burgin. Schreier varieties of linear $\Omega$-algebras. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 5. http://geodesic.mathdoc.fr/item/RM_1972_27_5_a11/

[1] A. G. Kurosh, “Multioperatornye koltsa i algebry”, UMN, 24:1 (1969), 3–15 | Zbl

[2] M. S. Burgin, “Lineinye $\Omega$-algebry nad kommutativnymi koltsami i dostizhimye mnogoobraziya”, Vestnik MGU, 1972, no. 2, 56–63 | MR | Zbl

[3] M. S. Burgin, “Teorema o svobode v nekotorykh mnogoobraziyakh lineinykh $\Omega$-algebr i $\Omega$-kolets”, UMN, 24:1 (1969), 27–38 | MR | Zbl

[4] A. I. Shirshov, “Podalgebry svobodnykh lievykh algebr”, Matem. sb., 33 (75):2 (1953), 441–452 | Zbl

[5] M. S. Burgin, “Gruppoid mnogoobrazii lineinykh $\Omega$-algebr”, UMN, 25:3 (1970), 263–264 | MR | Zbl

[6] V. A. Artamonov, M. S. Burgin, “Nekotorye svoistva podalgebr v mnogoobraziyakh lineinykh $\Omega$-algebr”, Matem. sb., 87 (129):1 (1972), 67–82 | MR | Zbl

[7] M. S. Burgin, “Lineinye $\Omega$-algebry s tozhdestvami nulevogo poryadka”, XI Vsesoyuznyi algebraicheskii kollokvium, Kishinev, 1971, 243–244

[8] S. Leng, Algebra, «Mir», M., 1968

[9] J. Lewin, “On Scheier varieties of linear algebras”, Trans. Amer. Math. Soc., 132 (1968), 553–562 | DOI | MR | Zbl