Existence of a continuum of closed invariant curves for a convex billiard
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1972_27_3_a13,
     author = {V. F. Lazutkin},
     title = {Existence of a~continuum of closed invariant curves for a~convex billiard},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1972},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1972_27_3_a13/}
}
TY  - JOUR
AU  - V. F. Lazutkin
TI  - Existence of a continuum of closed invariant curves for a convex billiard
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1972
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1972_27_3_a13/
LA  - ru
ID  - RM_1972_27_3_a13
ER  - 
%0 Journal Article
%A V. F. Lazutkin
%T Existence of a continuum of closed invariant curves for a convex billiard
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1972
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1972_27_3_a13/
%G ru
%F RM_1972_27_3_a13
V. F. Lazutkin. Existence of a continuum of closed invariant curves for a convex billiard. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 3. http://geodesic.mathdoc.fr/item/RM_1972_27_3_a13/

[1] Dzh. D. Birkgof, Dinamicheskie sistemy, Gostekhizdat, M.–L., 1941

[2] J. Moser, “On invariant curves of area-preserving mapping of an annulus”, Nachr. Akad. Wiss. Göttingen. Math-Phys. Kl., 11a (1962), 1–20 | MR