Certain algebraic equations with holomorphic coefficients
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 3 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1972_27_3_a11,
     author = {E. A. Gorin},
     title = {Certain algebraic equations with holomorphic coefficients},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1972},
     volume = {27},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1972_27_3_a11/}
}
TY  - JOUR
AU  - E. A. Gorin
TI  - Certain algebraic equations with holomorphic coefficients
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1972
VL  - 27
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/RM_1972_27_3_a11/
LA  - ru
ID  - RM_1972_27_3_a11
ER  - 
%0 Journal Article
%A E. A. Gorin
%T Certain algebraic equations with holomorphic coefficients
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1972
%V 27
%N 3
%U http://geodesic.mathdoc.fr/item/RM_1972_27_3_a11/
%G ru
%F RM_1972_27_3_a11
E. A. Gorin. Certain algebraic equations with holomorphic coefficients. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 27 (1972) no. 3. http://geodesic.mathdoc.fr/item/RM_1972_27_3_a11/

[1] E. A. Gorin, V. Ya. Lin, “Algebraicheskie uravneniya s nepreryvnymi koeffitsientami i nekotorye voprosy algebraicheskoi teorii kos”, Matem. sb., 78:4 (1969), 579–610 | MR | Zbl

[2] D. K. Faddeev, I. S. Sominskii, Sbornik zadach po vysshei algebre, Gostekhizdat, M., 1954

[3] P. Montel, Normalnye semeistva analiticheskikh funktsii, ONTI, M.– L., 1936

[4] V. I. Arnold, “Kosy algebraicheskikh funktsii i kogomologii lastochkinykh khvostov”, UMN, 23:4 (1968), 247–248 | MR

[5] V. Ya. Lin, “Algebroidnye funktsii i golomorfnye elementy gomotopicheskikh grupp kompleksnogo mnogoobraziya”, DAN, 201:1 (1971), 28–31 | Zbl

[6] E. A. Gorin, “Neskolko primerov, svyazannykh s algebraicheskimi uravneniyami v algebrakh funktsii”, DAN, 200:2 (1971), 273–276 | MR | Zbl