Locally homogeneous complex manifolds
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1971_26_5_a4,
     author = {P. A. Griffiths and W. Schmid},
     title = {Locally homogeneous complex manifolds},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1971},
     volume = {26},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1971_26_5_a4/}
}
TY  - JOUR
AU  - P. A. Griffiths
AU  - W. Schmid
TI  - Locally homogeneous complex manifolds
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1971
VL  - 26
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1971_26_5_a4/
LA  - ru
ID  - RM_1971_26_5_a4
ER  - 
%0 Journal Article
%A P. A. Griffiths
%A W. Schmid
%T Locally homogeneous complex manifolds
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1971
%V 26
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1971_26_5_a4/
%G ru
%F RM_1971_26_5_a4
P. A. Griffiths; W. Schmid. Locally homogeneous complex manifolds. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 5. http://geodesic.mathdoc.fr/item/RM_1971_26_5_a4/

[1] A. Andreoti, H. Grauert, “Théorèmes de finitude pour la cohomologie des espaces complexes”, Bull. Soc. Math. France, 90 (1962), 193–259 ; Kompleksnye prostranstva, sb., «Mir», M., 1965, 105–189 | MR | MR

[2] A. Andreotti, E. Vesentini, “Carleman estimates for the Laplace - Beltrami operator on complex manifolds”, Institute des Hautes Etudes Scientifiques. Publ. Math., 25 (1965), 81–130 | DOI | MR

[3] M. F. Atiyah, J. M. Singer, “The index of elliptic operators. I; III”, Ann. of Math., 87 (1968), 484–530 ; 564–604; UMN, 23:5 (1968), 99–142 ; УМН, 24:1 (1969), 127–182 | DOI | MR | Zbl | MR | MR | Zbl

[4] A. Borel, “Kahlerian coset spaces of semisimple Lie groups”, Proc. Nat. Acad. Sci. USA, 40 (1954), 1147–1151 | DOI | MR | Zbl

[5] A. Borel, A. Weil, “Representations linéares et espaces homogènes kähleriennes de groupes de Lie compacts”, Séminaire Bourbaki, Exposé par J. P. Serre (May 1954)

[6] A. Borel, F. Hirzebruch, “Characteristic classes and homogeneous spaces. I; II”, Amer. J. of Math., 80 (1958), 459–538 ; 81 (1959), 315–383 | DOI | MR | DOI | MR

[7] R. Bott, “Homogeneous vector bundles”, Ann. of Math., 66 (1957), 203–248 | DOI | MR | Zbl

[8] E. Calabi, E. Vesentini, “On compact, locally symmetric Kähler manifolds”, Ann. of Math., 71 (1960), 472–507 ; Matematika. Sb. perevodov, 6:2, 75–106 | DOI | MR | Zbl

[9] H. Grauert, H. Reckziegel, “Hermitsche Metriken und normale Familien holomorpher Abbildungen”, Mathematische Zeitschrift, 89 (1965), 108–125 | DOI | MR | Zbl

[10] Ph. A. Griffiths, “Some results on locally homogeneous complex manifolds”, Proc. Nat. Acad. Sci. USA, 56 (1966), 413–416 | DOI | MR | Zbl

[11] Ph. A. Griffiths, “Periods of integrals on algebraic manifolds. I; II”, Amer. J. of Math., 90 (1968), 568–626 | DOI | MR | Zbl

[12] Ph. A. Griffiths, “Periods of integrals on algebraic manifolds”, Publ. Math. Institute des Hautes Etudes Scientifiques, 38 (1970), 125–180 | DOI | MR | Zbl

[13] Ph. A. Griffiths, “Hermitian differential geometry and positive vector bundles”, Paper in honour of K. Kodaira, Global Analysis, University of Tokyo Press, 1969, 185–251 | MR

[14] Harish-Chandra, “Discrete series for semisimple Lie groups, II”, Acta Math., 116 (1966), 1–111 | DOI | MR | Zbl

[15] S. Khelgason, Differentsialnaya geometriya i simmetricheskie prostranstva, «Mir», M., 1964 | Zbl

[16] F. Hirzebruch, “Neue Topologische Methoden in der algebraischen Geometrie”, Ergebnisse der Mathematik, 9 (1956) | MR | Zbl

[17] F. Hirzebruch, “Automorphe Formen und der Satz von Riemann - Roch”, Symposium International de Topologia Algebraica, Mexico, 1958, 129–143 | MR

[18] W. V. D. Hodge, The theory and applications of harmonic integrals, 2nd ed., Cambridge University Press, 1959

[19] M. Ise, “Generalised automorphic forms and certain holomorphic vector bundles”, Amer. J. of Math., 86 (1964), 70–108 | DOI | MR | Zbl

[20] S. Kobayashi, “Invariant distances on complex manifolds and holomorphic mappings”, J. of Math. Soc. Japan, 19 (1967), 460–480 | MR | Zbl

[21] B. Kostant, “Lie algebra cohomology and the generalised Borel - Weil theorem”, Ann. of Math., 74 (1961), 329–387 | DOI | MR | Zbl

[22] M. H. Kwach, Generalisation of the big Picard theorem, Thesis, Berkley, 1968

[23] R. P. Langlands, “The dimension of spaces of automorphic forms”, Algebraic groups and discontinuous subgroups, Proc. of Symposia in Pure Math., 9, Amer. Math. Soc., Providence. R. J., 1966, 253–257 ; Arifmeticheskie gruppy i avtomorfnye funktsii, Sb., «Mir», M., 1969, 120–126 | MR | MR

[24] R. P. Langlands, “The dimensions of spaces of automorphic forms”, Amer. J. of Math., 85 (1963), 99–125 | DOI | MR | Zbl

[25] Y. Matsushima, S. Murakami, “On vector bundle valued harmonic-forms and automorphic forms on symmetric Riemannian manifolds”, Ann. of Math., 78 (1963), 365–416 ; Matematika, 9:5, 27–77 | DOI | MR | Zbl

[26] Y. Matsushima, S. Murakami, “On certain cohomology groupes, attached to Hermitian symmetric spaces”, Osaka J. of Math., 2 (1965), 1–35 | MR | Zbl

[27] K. Okamoto, H. Ozeki, “On square integrable $\overline{\partial}$-cohomology spaces, attached to Hermitian symmetric spaces”, Osaka J. of Math., 4 (1967), 95–110 | MR | Zbl

[28] W. Schmid, Homogeneous complex manifolds and representations of semisimple Lie groups, Thesis, Berkley, 1967

[29] W. Schmid, “Homogeneous complex manifolds and representations of semisimple Lie groups”, Proc. Nat. Acad. of Sci., USA, 59 (1958), 56–59 | DOI | MR

[30] E. Stifel, “Kristallographische Bestimmung der Charactere der geschlossenen Lieschen Gruppen”, Comm. Math. Helv., 17 (1944), 165–200 | DOI

[31] H. C. Wang, “Closed manifolds with homogeneous complex structure”, Amer. J. of Math., 76 (1954), 1–32 | DOI | MR | Zbl

[32] H. H. Wu, “Normal families of holomorphic mappings”, Acta Math., 119 (1967), 193–233 | DOI | MR | Zbl