The global smoothness of the solutions of a class of degenerating elliptic equations
Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 5 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{RM_1971_26_5_a15,
     author = {A. V. Fursikov},
     title = {The global smoothness of the solutions of a~class of degenerating elliptic equations},
     journal = {Trudy Matematicheskogo Instituta imeni V.A. Steklova},
     year = {1971},
     volume = {26},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/RM_1971_26_5_a15/}
}
TY  - JOUR
AU  - A. V. Fursikov
TI  - The global smoothness of the solutions of a class of degenerating elliptic equations
JO  - Trudy Matematicheskogo Instituta imeni V.A. Steklova
PY  - 1971
VL  - 26
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/RM_1971_26_5_a15/
LA  - ru
ID  - RM_1971_26_5_a15
ER  - 
%0 Journal Article
%A A. V. Fursikov
%T The global smoothness of the solutions of a class of degenerating elliptic equations
%J Trudy Matematicheskogo Instituta imeni V.A. Steklova
%D 1971
%V 26
%N 5
%U http://geodesic.mathdoc.fr/item/RM_1971_26_5_a15/
%G ru
%F RM_1971_26_5_a15
A. V. Fursikov. The global smoothness of the solutions of a class of degenerating elliptic equations. Trudy Matematicheskogo Instituta imeni V.A. Steklova, Tome 26 (1971) no. 5. http://geodesic.mathdoc.fr/item/RM_1971_26_5_a15/

[1] M. S. Agranovich, M. I. Vishik, “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, UMN, 19:3 (1964), 53–161 | Zbl

[2] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu nesamosopryazhennykh operatorov, «Nauka», M., 1965

[3] V. V. Grushin, “Ob odnom klasse gipoellipticheskikh operatorov”, Matem. sb., 83(125):3 (1970), 456–473 | Zbl

[4] A. V. Fursikov, “Ob odnom klasse vyrozhdayuschikhsya ellipticheskikh operatorov”, Matem. sb., 79 (121):3 (1969), 381–404 | MR | Zbl